Skip to main content
Log in

Optical Response of a Composite System “Monolayer of Spherical Particles in an Absorbing Matrix” at Normal Incidence of Plane Wave

  • Published:
Journal of Applied Spectroscopy Aims and scope

Equations are derived to describe scattering and absorption of light by a normally illuminated monolayer of identical spherical particles in a homogeneous light-absorbing medium (matrix). They are based on the quasi-crystalline approximation, mean-field approximation, and multipole expansion of fields and tensor Green’s function in terms of vector spherical wave functions. Results of numerical analysis of the coefficients of coherent transmission and reflection, incoherent scattering, and absorption of composite systems [a monolayer of gold (Au) nanoparticles in fullerene (C60) matrix and a monolayer of silver (Ag) nanoparticles in copper phthalocyanine (CuPc) matrix] in the visible spectrum at different particle concentrations and sizes are presented. The dependences of the wavelength of the plasmon resonance absorption maximum on the filling factor of the partially ordered monolayer calculated with (in the quasi-crystalline approximation) and without (in the interference approximation) considering multiple scattering of waves are compared. The calculation results are in qualitative agreement with known experimental data on the red shift of the resonance with increasing monolayer filling factor. The derived equations can be used in solving problems of thin-fi lm optics and developing photonic and optoelectronic devices containing absorbing matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Daneshfard, B. Dalfardi, and G. S. M. Nezhad, J. Med. Biography, 24, No. 2, 227–231 (2016).

    Article  Google Scholar 

  2. B. I. Stepanov, Introduction to Modern Optics. Photometry. On the Possible and Impossible in Optics [in Russian], Navuka i Tékhnika, Minsk (1989).

  3. B. I. Stepanov, Introduction to Modern Optics. Quantum Theory of the Interaction of Light and Matter [in Russian], Navuka i Tékhnika, Minsk (1990).

  4. B. I. Stepanov, Introduction to Modern Optics. Absorption and Emission of Light by Quantum Systems [in Russian], Navuka i Tékhnika, Minsk (1991).

  5. O. P. Girin and B. I. Stepanov, Zh. Éksp. Teor. Fiz., 27, 467–478 (1954).

    Google Scholar 

  6. K. M. Hong, J. Opt. Soc. Am., 70, 821–826 (1980).

    Article  ADS  Google Scholar 

  7. A. Modinos, Physica A, 141, 575–588 (1987).

    Article  ADS  Google Scholar 

  8. C. Soci, G. Adamo, D. Cortecchia, K. Wang, et al., Opt. Mater.: X, No. 17, 100214 (2023); https://doi.org/10.1016/j.omx.2022.100214.

  9. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press (2012).

  10. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond, Wiley (2010).

  11. A. García-Valenzuela, E. Gutierrez-Reyes, and R. G. Barrera, J. Opt. Soc. Am. A, 29, 1161–1179 (2012).

    Article  ADS  Google Scholar 

  12. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Science, 354, No. 3614, 2472 (1–8) (2016).

  13. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, Chem. Rev., 118, 5912–5951 (2018).

    Article  Google Scholar 

  14. A. A. Miskevich and V. A. Loiko, Zh. Éksp. Teor. Fiz., 113, 1–13 (2011).

    Google Scholar 

  15. V. A. Loiko and A. A. Miskevich, Opt. Spectrosc., 115, 274–282 (2013).

    Article  ADS  Google Scholar 

  16. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 151, 260–268 (2015).

    Article  ADS  Google Scholar 

  17. N. A. Loiko, A. A. Miskevich, and V. A. Loiko, J. Opt. Soc. Am. A, 35, 108–118 (2018).

    Article  ADS  Google Scholar 

  18. N. A. Loiko, A. A. Miskevich, and V. A. Loiko, Zh. Éksp. Teor. Fiz., 126, 159–173 (2018).

    Google Scholar 

  19. N. A. Loiko, A. A. Miskevich, and V. A. Loiko, Opt. Spectrosc., 125, 655–666 (2018).

    Article  ADS  Google Scholar 

  20. V. A. Loiko and A. A. Miskevich, in: Multiple Light Scattering, Radiative Transfer and Remote, A. A. Kokhanovsky (Ed.), Vol. 1, Ch. 2, Sensing, Springer Series in Light Scattering, Springer (2018), pp. 101–230.

  21. N. A. Loiko, A. A. Miskevich, and V. A. Loiko, Zh. Éksp. Teor. Fiz., 131, 227–243 (2020).

    Google Scholar 

  22. N. A. Loiko, A. A. Miskevich, and V. A. Loiko, J. Opt. Soc. Am. B, 38, C22–C32 (2021).

    Article  Google Scholar 

  23. N. A. Loiko, A. A. Miskevich, and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 266, Article ID 107571 (1–20) (2021).

  24. N. A. Loiko, A. A. Miskevich, and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transf., 289, Article ID 108291 (1–9) (2022).

  25. N. A. Loiko, A. A. Miskevich, and V. A. Loiko, J. Opt. Soc. Am. A, 39, C36–C44 (2022).

    Article  Google Scholar 

  26. M. Lax, Phys. Rev., 85, 621–629 (1952).

    Article  ADS  Google Scholar 

  27. B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys., 96, Article ID 7519 (2004).

  28. J.-Y. Lee and P. Peumans, Opt. Express, 18, 10078–10087 (2010).

    Article  ADS  Google Scholar 

  29. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, Nat. Mater., 11, 1017–1022 (2012).

    Article  ADS  Google Scholar 

  30. F. L.-P. Sergio, G. Rodrigo, and L. Martín-Moreno, Proc. IEEE, 104, 2288–2306 (2016).

    Article  Google Scholar 

  31. M. Olaimat, L. Yousefi , and O. Ramahi, J. Opt. Soc. Am. B, 38, 638–651 (2021).

    Article  ADS  Google Scholar 

  32. W. Yang, S. Feng, X. Zhang, Y. Wang, C. Li, L. Zhang, J. Zhao, G. Gurzadyan, and S. Tao, ACS Appl. Mater. Interfaces, 13, 38722–38731 (2021).

    Article  Google Scholar 

  33. W. C. Mundy, J. A. Roux, and A. M. Smith, J. Opt. Soc. Am., 64, 1593–1597 (1974).

    Article  ADS  Google Scholar 

  34. C. F. Bohren and D. P. Gilra, J. Colloid Interface Sci., 72, 215–221 (1979).

    Article  ADS  Google Scholar 

  35. I. W. Sudiarta and P. Chylek, J. Quant. Spectrosc. Radiat. Transf., 70, 709–714 (2001).

    Article  ADS  Google Scholar 

  36. G. Videen and W. Sun, Appl. Opt., 42, 6724–6727 (2003).

    Article  ADS  Google Scholar 

  37. J. Yin and L. Pilon, J. Opt. Soc. Am. A, 23, 2784–2796 (2006).

    Article  ADS  Google Scholar 

  38. Q. Fu and W. Sun, J. Quant. Spectrosc. Radiat. Transf., 100, 137–142 (2006).

    Article  ADS  Google Scholar 

  39. R. A. Dynich, A. N. Ponyavina, and V. V. Filippov, J. Appl. Spectrosc., 76, 704–710 (2009).

    Article  ADS  Google Scholar 

  40. M. I. Mishchenko, G. Videen, and P. Yang, Opt. Lett., 42, 4873–4876 (2017).

    Article  ADS  Google Scholar 

  41. M. I. Mishchenko and J. M. Dlugach, J. Quant. Spectrosc. Radiat. Transf., 211, 179–187 (2018).

    Article  ADS  Google Scholar 

  42. L. X. Ma, B. W. Xie, C. C. Wang, and L. H. Liu, J. Quant. Spectrosc. Radiat. Transf., 230, 24–35 (2019).

    Article  ADS  Google Scholar 

  43. J. Dong, W. Zhang, and L. Liu, Opt. Express, 29, 7690–7705 (2021).

    Article  ADS  Google Scholar 

  44. N. G. Khlebtsov, J. Quant. Spectrosc. Radiat. Transf., 280, Article ID 108069 (2022).

  45. J. Ziman, Models of Disorder, Cambridge University (1979).

  46. A. P. Ivanov, V. A. Loiko, and V. P. Dik, Propagation of Light in Densely Packed Disperse Media [in Russian], Nauka i Tekhnika, Minsk (1988).

  47. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill Book, New York (1953).

    MATH  Google Scholar 

  48. V. A. Babenko, L. G. Astafyeva, and V. N. Kuzmin, Electromagnetic Scattering in Disperse Media: Inhomogeneous and Anisotropic Particles, Springer, Berlin (2003).

    Google Scholar 

  49. Ch.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, IEEE Press, New York (1993).

    Google Scholar 

  50. O. R. Cruzan, Q. Appl. Math., 20, 33–40 (1962).

    Google Scholar 

  51. J. K. Percus and G. J. Yevick, Phys. Rev., 110, 1–13 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  52. R. A. Dynich, A. D. Zamkovets, A. N. Ponyavina, and E. M. Shpilevsky, Proc. Natl. Acad. Sci. Belarus, Phys. Math. Ser., 55, 232–241 (2019).

  53. E. D. Palik, Handbook of Optical Constants of Solids, 1, Academic (1985).

  54. V. Sittinger, P. S. C. Schulze, Ch. Messmer, A. Pfl ug, and J. Ch. Goldschmidt, Opt. Express, 30, 37957–37970 (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Loiko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 299–309, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-299-309.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiko, N.A., Miskevich, A.A. & Loiko, V.A. Optical Response of a Composite System “Monolayer of Spherical Particles in an Absorbing Matrix” at Normal Incidence of Plane Wave. J Appl Spectrosc 90, 388–399 (2023). https://doi.org/10.1007/s10812-023-01545-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01545-3

Keywords

Navigation