Skip to main content
Log in

Spatio-Temporal Correlations of Photons from a Pseudo-Thermal Source

  • Published:
Journal of Applied Spectroscopy Aims and scope

The spatio-temporal correlation properties of a pseudo-thermal light source with nano- and microsecond time resolution are studied on the basis of algorithms that take into account the features of a high-speed time-resolving matrix of single-photon detectors. It is shown that the change in the degree of second-order coherence of radiation scattered on a rotating disk with irregularities of different scales can be represented using a nonlinear hyperbolic mapping. The change in coherence during the transition of the generated photon flux from coherent to pseudothermal is studied based on the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Stepanov, Introduction to Modern Optics [in Russian], in 4 vols., Nauka i Tekhnika, Minsk (1991).

  2. E. M. Brumberg and S. I. Vavilov, Izv. Akad. Nauk SSSR, VII Ser., 7, 919–941 (1933).

  3. S. I. Vavilov, Microstructure of Light: Investigations and Essays [in Russian], Akad. Nauk SSSR, Moscow (1950).

    Google Scholar 

  4. R. J. Glauber, Phys. Rev., 130, 2529 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Ya. Kilin, Quantum Optics. Fields and Their Detection [in Russian], Navuka i Tékhnika, Minsk (1990).

  6. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).

  7. R. Hanbury Brown and R. Q. Twiss, Nature, 177, 27–29 (1956).

  8. S. Chopra and L. Mandel, Phys. Rev. Lett., 30, 60 (1973).

    Article  ADS  Google Scholar 

  9. O. A. Ivanova, T. S. Iskhakov, A. N. Penin, and M. V. Chekhova, Quantum Electron., 36, 951–956 (2006).

    Article  ADS  Google Scholar 

  10. B. Blauensteiner, I. Herbauts, S. Bettelli, A. Poppe, and H. Hubel, Phys. Rev. A: At., Mol., Opt. Phys., 79, Article ID 063846 (2009).

  11. P. R. Tapster and J. G. Rarity, J. Mod. Opt., 45, Article ID 595 (1998).

  12. D. B. Horoshko, S. De Bievre, G. Patera, and M. I. Kolobov, Phys. Rev. A, 100, Article ID 053831 (2019).

  13. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, Nature, 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  14. X.-L. Chu, S. Gotzinger, and V. Sandoghdar, Nat. Photonics, 11, 58–62 (2017).

    Article  ADS  Google Scholar 

  15. B. Rodiek, M. Lopez, H. Hofer, G. Porrovecchio, M. Smid, X.-L. Chu, S. Gotzinger, V. Sandoghdar, S. Lindner, C. Becher, and S. Kuck, Optica, 4, 71–76 (2017).

    Article  ADS  Google Scholar 

  16. J. Shi, G. Patera, D. B. Horoshko, and M. I. Kolobov, J. Opt. Soc. Am. B, 37, No. 12, 3741–3753 (2020).

    Article  ADS  Google Scholar 

  17. D. S. Mogilevtsev and V. S. Shchesnovich, Opt. Lett., 35, Article ID 3375 (2010).

  18. S. Ya. Kilin, D. B. Khoroshko, and A. P. Nizovtsev (Eds.), Quantum Cryptography: Ideas and Practice [in Russian], Belaruskaya Navuka, Minsk (2007).

  19. M. M. Eskandari, D. B. Horoshko, and S. Ya. Kilin, J. Appl. Spectrosc., 86, No. 5, 806–809 (2019).

    Article  ADS  Google Scholar 

  20. S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett., 80, 869 (1998).

    Article  ADS  Google Scholar 

  21. D. B. Horoshko and S. Ya. Kilin, Phys. Rev. A: At., Mol., Opt. Phys., 61, Article ID 032304 (2000).

  22. S. Ya. Kilin, Usp. Fiz. Nauk, 169, 507 (1999).

    Article  Google Scholar 

  23. M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, Phys. Rev. Lett., 104, Article ID 063602 (2010).

  24. A. V. Belinskii and D. N. Klyshko, Zh. Éksp. Teor. Fiz., 105, 487–493 (1994).

    Google Scholar 

  25. R. Bennink, S. Bentley, and R. Boyd, Phys. Rev. Lett., 89, Article ID 113601 (2002).

  26. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. A: At., Mol., Opt. Phys., 70, Article ID 013802 (2004).

  27. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, J. Mod. Opt., 53, Nos. 5–6, 739–760 (2006).

    Article  ADS  Google Scholar 

  28. A. S. Chirkin, Pisʹma Zh. Éksp. Teor. Fiz., 103, No. 4, 309–313 (2016).

    Google Scholar 

  29. L. Gasparini, M. Zarghami, H. Xu, L. Parmesan, M. M. Garcia, M. Unternahrer, B. Bessire, A. Stefanov, D. Stoppa, and M. Perenzoni, IEEE Int. Solid-State Circuits Conference-(ISSCC), (2018), pp. 98–100.

  30. M. Zarghami, L. Gasparini, M. Perenzoni and L. Pancheri, Instruments, 3, No. 3, 38–49 (2019).

    Article  Google Scholar 

  31. W. Martienssen and E. Spiller, Am. J. Phys., 32, 919–926 (1964).

    Article  ADS  Google Scholar 

  32. T. Asakura, Optoelectronics, 2, 115–123 (1970).

    Google Scholar 

  33. B. Crosignani, B. Daino, and P. Di Porto, J. Appl. Phys., 42, 399–403 (1971).

    Article  ADS  Google Scholar 

  34. Y. Cai, Y. Chen, J. Yu, X. Liu, and L. Liu, Generation of partially coherent beams, in: Taco D. Visser (Ed.), Progress in Optics, Vol. 62, Elsevier (2017), pp. 157–223.

  35. J. W. Goodman, Introduction to Fourier Optics, The McGraw-Hill Companies, Inc. (1968).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Starovoitov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 287–298, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-287-298.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starovoitov, V.S., Chizhevsky, V.N., Horoshko, D.B. et al. Spatio-Temporal Correlations of Photons from a Pseudo-Thermal Source. J Appl Spectrosc 90, 377–387 (2023). https://doi.org/10.1007/s10812-023-01544-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01544-4

Keywords

Navigation