Skip to main content
Log in

Laser Synthesis and Optical Properties of Hybrid Silicon Nanostructures for Photothermal Conversion of Solar Radiation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Dependences of the morphology and optical properties of silicon nanostructures on the laser ablation synthesis conditions, namely, the laser focusing conditions, laser pulse repetition rate, and temperature and composition of the solution, were established. The obtained regularities were used to develop a method for formation of Si–Ag and Si–Ag–Cu hybrid metal–silicon nanostructures. The obtained broadband absorption of the Si–Ag–Cu nanoparticles is promising for application in nanofluids for photothermal energy conversion of solar radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Baffou and R. Quidant, Laser Photonics Rev., 7, No. 2, 171–187 (2013); doi: https://doi.org/10.1002/lpor.201200003.

  2. M. Belekoukia, E. Kalamaras, J. Tan, F. Vilela, S. Garcia, M. Maroto-Valer, and J. Xuan, Appl. Energy, 247, 517–524 (2019); doi: https://doi.org/10.1016/j.apenergy.2019.04.069.

    Article  Google Scholar 

  3. S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, Opt. Mater. Express, 6, No. 2, 640–648 (2016); doi: https://doi.org/10.1364/OME.6.000640.

  4. M. Cui, S. Liu, B. Song, D. Guo, J. Wang, G. Hu, Y. Su, and Y. He, Nano-Micro Lett., 11, No. 73, 1–15 (2019); doi: https://doi.org/10.1007/s40820-019-0306-9.

  5. M. Chen, Y. He, J. Huang, and J. Zhu, Energy Convers. Manage., 127, 293–300 (2016); doi: https://doi.org/10.1016/j.enconman.2016.09.015.

    Article  Google Scholar 

  6. D. Wu, H. Zhu, L. Wang, and L. Liu, Curr. Nanosci., 5, No. 1, 103–112 (2009); doi: https://doi.org/10.2174/157341309787314548.

    Article  ADS  Google Scholar 

  7. H. Tyagi, P. Phelan, and R. Prasher, J. Sol. Energy Eng., 131, No. 4, 041004 (1–7) (2009); doi: https://doi.org/10.1115/1.3197562.

  8. H. Moghaieb, D. Padmanaban, P. Kumar, A. Ul Haq, C. Maddi, R. McGlynn, M. Arredondo, H. Singh, P. Maguire, and D. Mariotti, Nano Energy, 108, Article ID 108112 (2023); doi: https://doi.org/10.1016/j.nanoen.2022.108112.

  9. R. McGlynn, S. Chakrabarti, B. Alessi, H. S. Moghaieb, P. Maguire, H. Singh, and D. Mariotti, Sol. Energy, 203, 37–45 (2020); doi: https://doi.org/10.1016/j.solener.2020.04.004.

    Article  ADS  Google Scholar 

  10. Z. Said, M. H. Sajid, R. Saidur, G. A. Mahdiraji, and N. A. Rahim, Numer. Heat Transf. A, 67, No. 9, 1010–1027 (2015); doi: https://doi.org/10.1080/10407782.2014.955344.

    Article  Google Scholar 

  11. G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, Md. M. Rahman, T. J. Zhang, and G. Chen, Nano Energy, 17, 290–301 (2015); doi: https://doi.org/10.1016/j.nanoen.2015.08.021.

  12. C. L. L. Beicker, M. Amjad, E. P. Bandarra Filho, and D. Wen, Sol. Energy Mater. Sol. Cells, 188, 51–65 (2018); doi: https://doi.org/10.1016/j.solmat.2018.08.013.

  13. A. Gimeno-Furio, L. Hernandez, S. Barison, F. Agresti, D. Cabaleiro, and S. Mancin, Sol. Energy, 191, 323–331 (2019); doi: https://doi.org/10.1016/j.solener.2019.09.012.

    Article  ADS  Google Scholar 

  14. V. K. Pustovalov, SN Appl. Sci., 1, 356 (1–25) (2019); doi: https://doi.org/10.1007/s42452-019-0370-2.

  15. M. Chen, Y. He, J. Zhu, and D. Wen, Appl. Energy, 181, 65–74 (2016); doi: https://doi.org/10.1016/j.apenergy.2016.08.054.

    Article  Google Scholar 

  16. A. R. Mallah, S. N. Kazi, M. N. M. Zubir, and A. Badarudin, Appl. Energy, 229, 505–521 (2018); doi: https://doi.org/10.1016/j.apenergy.2018.07.113.

    Article  Google Scholar 

  17. J. Jeon, S. Park, and B. J. Lee, Sol. Energy, 132, 247–256 (2016); doi: https://doi.org/10.1016/j.solener.2016.03.022.

    Article  ADS  Google Scholar 

  18. M. Mehrali, M. K. Ghatkesar, and R. Pecnik, Appl. Energy, 224, 103–115 (2018); doi: https://doi.org/10.1016/j.apenergy.2018.04.065.

    Article  Google Scholar 

  19. E. T. Ulset, P. Kosinski, Y. Zabednova, O. V. Zhdaneev, P. G. Struchalin, and B. V. Balakin, Nano Energy, 50, 339–346 (2018); doi: https://doi.org/10.1016/j.nanoen.2018.05.050.

  20. J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich, Nano Lett., 4, No. 7, 1181–1186 (2004); doi: https://doi.org/10.1021/nl0497373.

  21. R. A. Bley and S. M. Kauzlarich, J. Am. Chem. Soc., 118, No. 49, 12461–12462 (1996); doi: https://doi.org/10.1021/ja962787s,

    Article  Google Scholar 

  22. G. B. Teh, S. Nagalingam, R. D. Tilley, S. Ramesh, and Y. S. Lim, Z. Phys. Chem., 223, 1417–1426 (2009); doi: https://doi.org/10.1524/zpch.2009.5466.

  23. A. Fojtik and A. Henglein, Chem. Phys. Lett., 221, Nos. 5–6, 363–367 (1994).

    Article  ADS  Google Scholar 

  24. R. M. Sankaran, D. Holunga, R. C. Flagan, and K. P. Giapis, Nano Lett., 5, No. 3. 537–541 (2005); doi: https://doi.org/10.1021/nl0480060.

  25. L. Mangolini, E. Thimsen, and U. Kortshagen, Nano Lett., 5, No. 4, 655–659 (2005); doi: https://doi.org/10.1021/nl050066y.

  26. S. Lee, W. J. Cho, C. S. Chin, I. K. Han, W. J. Choi, Y. J. Park, J. D. Song, and J. I. Lee, Jpn. J. Appl. Phys., 43, No. 6B, L784 (2004); doi: https://doi.org/10.1143/JJAP.43.L784.

  27. D. Zhang, B. Gokce, and S. Barcikowski, Chem. Rev., 117, No. 5, 3990–4103 (2017); doi: https://doi.org/10.1021/acs.chemrev.6b00468.

    Article  Google Scholar 

  28. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scire, G. Compagnini, S. Reichenberger, and S. Barcikowski, Chem. Eur. J., 26, 9206–9242 (2020); doi: https://doi.org/10.1002/chem.202000686.

    Article  Google Scholar 

  29. M. Censabella, V. Torrisi, G. Compagnini, M. G. Grimaldi, and F. Ruffino, Phys. E, 118, 113887 (2020); doi: https://doi.org/10.1016/j.physe.2019.113887.

  30. F. Stokker-Cheregi, T. Acsente, I. Enculescu, C. Grisolia, and G. Dinescu, Dig. J. Nanomater. Biostructures, 7, No. 4, 1569–1576 (2012).

    Google Scholar 

  31. D. Riabinina, M. Chaker, and J. Margot, Nanotechnology, 23, 135603–135607 (2012); doi: https://doi.org/10.1088/0957-4484/23/13/135603.

  32. J.-S. Jeon and C.-S. Yeh, J. Chin. Chem. Soc., 45, 721–726 (1998); doi: https://doi.org/10.1002/jccs.199800109.

    Article  Google Scholar 

  33. A. Kanitz, M.-R. Kalus, E. L. Gurevich, A. Ostendorf, S. Barcikowski, and D. Amans, Plasma Sources Sci. Technol., 28, No. 10, 103001 (2019); doi: https://doi.org/10.1088/1361-6595/ab3dbe.

  34. M. Dell′Aglio and A. De Giacomo, Appl. Sci., 11, No. 21, Article ID 10344 (2021); doi: https://doi.org/10.3390/app112110344.

  35. K. Choudhury, R. K. Singh, P. Kumar, M. Ranjan, A. Srivastava, and A. Kumar, Nano-Struct. Nano-Objects, 17, 129–137 (2019); doi: https://doi.org/10.1016/j.nanoso.2018.12.006.

    Article  Google Scholar 

  36. Y. Jiang, P. Liu, Y. Liang, H. Li, and G. Yang, Appl. Phys. A: Mater. Sci. Process., 105, 903–907 (2011); doi: https://doi.org/10.1007/s00339-011-6557-z.

    Article  ADS  Google Scholar 

  37. H. W. Kang and A. J. Welch, J. Appl. Phys., 101, 083101 (2007); doi: https://doi.org/10.1063/1.2715746.

  38. K. L. McGilvray, C. Fasciani, C. J. Bueno-Alejo, R. Schwartz-Narbonne, and J. C. Scaiano, Langmuir, 28, No. 46, 16148–16155 (2012); doi:https://doi.org/10.1021/la302814v.

  39. D. Tan, Z. Ma, B. Xu, Y. Dai, G. Ma, M. He, Z. Jin, and J. Qiu, Phys. Chem. Chem. Phys., 13, 20255–20261 (2011); doi: https://doi.org/10.1039/c1cp21366k.

    Article  Google Scholar 

  40. H. Elangovan, S. Sengupta, R. Narayanan, and K. Chattopadhyay, J. Mater. Sci., 56, No. 2, 1515–1526 (2020); doi: https://doi.org/10.1007/s10853-020-05374-z.

  41. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, Phys. Rev. B: Condens. Matter Mater. Phys., 60, 2704–2714 (1999); doi: https://doi.org/10.1103/PhysRevB.60.2704.

    Article  ADS  Google Scholar 

  42. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, Langmuir, 12, 4329–4335 (1996); doi: https://doi.org/10.1021/la9601871.

  43. P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, Opt. Commun., 270, No. 2, 391–395 (2007); doi: https://doi.org/10.1016/j.optcom.2006.09.050.

    Article  ADS  Google Scholar 

  44. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, Opt. Mater. Express, 2, No. 5, 510–518 (2012); doi: https://doi.org/10.1364/OME.2.000510.

  45. M. H. Mahdieh and B. Fattahi, Opt. Laser Technol., 75, 188–196 (2015); doi: https://doi.org/10.1016/j.optlastec.2015.07.006.

    Article  ADS  Google Scholar 

  46. N. E. Jasbi and D. Dorranian, Opt. Quantum Electron., 49, No. 6, 1–13 (2017); doi: https://doi.org/10.1007/s11082-017-1041-4.

    Article  Google Scholar 

  47. Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, J. Colloid Interface Sci., 300, No. 2, 612–615 (2006); doi: https://doi.org/10.1016/j.jcis.2006.04.005.

  48. E. Solati and D. Dorranian, Bull. Mater. Sci., 39, No. 7, 1677–1684 (2016); doi: https://doi.org/10.1007/s12034-016-1315-7.

    Article  Google Scholar 

  49. Q. Shabir, A. Pokale, A. Loni, D. R. Johnson, L.T. Canham, R. Fenollosa, M. Tymczenko, I. Rodriguez, F. Meseguer, A. Cros, and A. Cantarero, Silicon, 3, 173–176 (2011); doi: https://doi.org/10.1007/s12633-011-9097-4.

  50. G. Marcins, J. Butikova, I. Tale, B. Polyakov, R. Kalendarjov, and A. Muhin, IOP Conf. Ser.: Mater. Sci. Eng., 23, No. 1, 012035 (2011); doi: https://doi.org/10.1088/1757-899X/23/1/012035.

  51. C. Meier, S. Luttjohann, V. G. Kravets, H. Nienhaus, A. Lorke, and H. Wiggers, Physica E, 32, Nos. 1–2, 155–158 (2006); doi: https://doi.org/10.1016/j.physe.2005.12.030.

  52. Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, Opt. Express, 24, A1075–A1082 (2016); doi: https://doi.org/10.1364/OE.24.0A1075.

    Article  ADS  Google Scholar 

  53. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. F. Ren, Light: Sci. Appl., 3, Article ID e161 (2014); doi: https://doi.org/10.1038/lsa.2014.42.

  54. D. Zhang, B. Gokce, C. Notthoff, and S. Barcikowski, Sci. Rep., 5, No. 1, 14405 (2015); doi: https://doi.org/10.1038/srep13661.

  55. B. Dutta, E. Kar, N. Bose, and S. Mukherjee, RSC Adv., 5, 105422–105434 (2015); doi: https://doi.org/10.1039/C5RA21903E.

  56. Y. Abboud, T. Saffaj, A. Chagraoui, A. E. Bouari, K. Brouzi, O. Tanane, and B. Ihssane, Appl. Nanosci., 4, 571–576 (2014); doi: https://doi.org/10.1007/s13204-013-0233-x.

  57. G. Nealon, B. Donnio, R. Greget, J.-P. Kappler, E. Terazzi, and J.-L. Gallani, Nanoscale, 4, 5244–5258 (2012); doi: https://doi.org/10.1039/c2nr30640a.

  58. S. Petrovic, B. Salatic, D. Milovanovic, V. Lazovic, L. Zivkovic, M. Trtica, and B. Jelenkovic, J. Opt., 17, Article ID 025402 (2015); doi: https://doi.org/10.1088/2040-8978/17/2/025402.

  59. T. Boldoo, J. Ham, E. Kim, and H. Cho, Energies, 13, No. 21, Article ID 5748 (2020); doi: https://doi.org/10.3390/en13215748.

  60. A. Ferraro, P. Cerza, V. Mussi, L. Maiolo, A. Convertino, and R. Caputo, J. Phys. Chem. C, 125, No. 25, 14134–14140 (2021); doi: https://doi.org/10.1021/acs.jpcc.1c03732.

    Article  Google Scholar 

  61. W. W. Gartner, Phys. Rev., 122, No. 2, 419 (1961); doi: https://doi.org/10.1103/PhysRev.122.419.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Tarasenka.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 253–265, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-253-265.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenka, N.N., Kornev, V.G., Urmanov, B.D. et al. Laser Synthesis and Optical Properties of Hybrid Silicon Nanostructures for Photothermal Conversion of Solar Radiation. J Appl Spectrosc 90, 346–357 (2023). https://doi.org/10.1007/s10812-023-01541-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01541-7

Keywords

Navigation