Skip to main content
Log in

Endogenous Photoacceptors Sensitizing Photobiological Reactions in Somatic Cells

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effects of radiation from laser and LED sources with wavelengths λ = 405 and 445 nm on the metabolic activity of cultured somatic cells were compared. A more pronounced inhibitory effect was observed upon exposure to light with λ = 405 nm. Fundamental differences in the action of monochromatic and quasi-monochromatic light were not noted. The photobiological effect was shown to be due to photochemical processes involving various reactive oxygen species, the contribution of which to cell inactivation depended on the time after the termination of irradiation. Porphyrin components were detected for the first time in fluorescence spectra of suspensions of living cells in addition to the flavin component. It was concluded based on a comparison of the absorption characteristics of flavin and porphyrin sensitizers, chemiluminescence analysis, and the biological effects of radiation with λ = 405 and 445 nm that endogenous porphyrins with the most intense absorption in this area made the determining contribution to singlet oxygen formation in cells when exposed to radiation with λ = 405 nm. The contribution of flavins was more pronounced under the action of radiation with λ = 445 nm, which corresponded to their absorption spectrum maximum and the absorption minimum of endogenous porphyrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Plavskii, A. V. Mikulich, N. V. Barulin, L. G. Plavskaya, A. I. Tretyakova, I. A. Leusenko, T. S. Ananich, and N. S. Serdyuchenko, Laser Therapies: Types, Uses and Safety, Nova Science Publishers, New York (2020), Ch. 1, pp. 1–68.

    Google Scholar 

  2. C. Dompe, L. Moncrieff, J. Matys, K. Grzech-Lesniak, I. Kocherova, A. Bryja, M. Bruska, M. Dominiak, P. Mozdziak, T. H. I. Skiba, J. A. Shibli, A. Angelova Volponi, B. Kempisty, and M. Dyszkiewicz-Konwinska, J. Clin. Med., 9, No. 6, Article ID 1724 (2020).

  3. P. Rola, S. Wlodarczak, M. Lesiak, A. Doroszko, and A. Wlodarczak, Photonics, 9, No. 7, 502 (2022).

    Article  Google Scholar 

  4. Yu. E. Eremenko, E. L. Malets, A. A. Kupriyanova, V. I. Zhurnevich, and V. Yu. Plavskii, Dokl. Nats. Akad. Nauk Belarusi, 64, No. 1, 86–93 (2020).

    Article  Google Scholar 

  5. V. Y. Plavskii and N. V. Barulin, J. Appl. Spectrosc., 75, 241–250 (2008).

    Article  ADS  Google Scholar 

  6. V. Y. Plavskii and N. V. Barulin, J. Appl. Spectrosc., 75, 843–856 (2008).

    Article  ADS  Google Scholar 

  7. V. Y. Plavskii and N. V. Barulin, J. Opt. Technol., 75, No. 9, 546–552 (2008).

    Article  Google Scholar 

  8. M. Yeste, M. Castillo-Martín, S. Bonet, and J. E. Rodriguez-Gil, Anim. Reprod. Sci., 194, 19–32 (2018).

    Article  Google Scholar 

  9. A. V. Budagovsky, M. V. Maslova, O. N. Budagovskaya, and E. V. Grosheva, BIO Web Conf., 23, Article ID 02001 (2020).

  10. A. N. Rubinov and A. A. Afanasʹev, Opt. Spektrosk., 98, No. 6, 1027–1032 (2005).

    Article  Google Scholar 

  11. S. Passarella and T. Karu, J. Photochem. Photobiol., B, 140, 344–358 (2014).

  12. M. R. Hamblin and A. Liebert, Photobiomodulation, Photomed., Laser Surg., 40, No. 2, 75–77 (2022).

  13. A. Liebert, W. Capon, V. Pang, D. Vila, B. Bicknell, C. McLachlan, and H. Kiat, Biomedicines, 11, 237 (2023).

    Article  Google Scholar 

  14. A. P. Sommer, Photobiomodulation, Photomed., Laser Surg., 37, No. 6, 336–341 (2019).

  15. T. I. Karu, IUBMB Life, 62, 607–610 (2010).

    Article  Google Scholar 

  16. H. Serrage, V. Heiskanen, W. M. Palin, P. R. Cooper, M. R. Milward, M. Hadis, and M. R. Hamblin, Photochem. Photobiol. Sci., 18, No. 8, 1877–1909 (2019).

    Article  Google Scholar 

  17. P. L. V. Lima, C. V. Pereira, N. Nissanka, T. Arguello, G. Gavini, C. M. D. C. Maranduba, F. Diaz, and C. T. Moraes, J. Photochem. Photobiol., B, 194, 71–75 (2019).

  18. B. Quirk and H. Whelan, Photomed. Laser Surg., 34, No. 12, 631–637 (2016).

    Article  Google Scholar 

  19. M. Eichler, R. Lavi, A. Shainberg, and R. Lubart, Lasers Surg. Med., 37, 314–319 (2005).

    Article  Google Scholar 

  20. M. R. Hamblin, Photochem. Photobiol., 94, No. 2, 199–212 (2018).

    Article  Google Scholar 

  21. S. D. Zakharov and A. V. Ivanov, Kvantovaya Elektron. (Moscow), 29, 192–214 (1999). V. Y. Plavskii, N. V. Barulin, A. V. Mikulich, A. I. Tretyakova, T. S. Ananich, L. G. Plavskaya, I. A. Leusenka, A. N. Sobchuk, V. A. Sysov, O. N. Dudinova, A. I. Vodchits, I. A. Khodasevich, and V. A. Orlovich, J. Photochem. Photobiol., B, 216, Article ID 112112 (2021).

  22. V. Plavskii, A. Mikulich, N. Barulin, T. Ananich, L. Plavskaya, A. Tretyakova, and I. Leusenka, Photochem. Photobiol., 96, No. 6, 1294–1313 (2020).

    Article  Google Scholar 

  23. T. J. Karu, G. S. Kalendo, V. S. Letokhov, and V. V. Lobko, Nuovo Cimento Soc. Ital. Fis. D, 3, 309–318 (1984).

    Article  ADS  Google Scholar 

  24. K. Hoenes, U. Wenzel, B. Spellerberg, and M. Hessling, Photochem. Photobiol., 96, 156–169 (2020).

    Article  Google Scholar 

  25. V. Yu. Plavskii, A. V. Mikulich, A. I. Tretyakova, I. A. Leusenka, L. G. Plavskaya, O. A. Kazyuchits, I. I. Dobysh, and T. P. Krasnenkova, J. Photochem. Photobiol., B, 183, 172–183 (2018).

  26. R. M. Tomb, T. A. White, J. E. Coia, J. G. Anderson, S. J. MacGregor, and M. Maclean, Photochem. Photobiol., 94, 445–458 (2018).

    Article  Google Scholar 

  27. S. I. Nagahama, T. Yanamoto, M. Sano, and T. Mukai, Jpn. J. Appl. Phys., 40, No. 5R, 3075–3081 (2001).

    Article  ADS  Google Scholar 

  28. T. Mosmann, J. Immunol. Methods, 65, 55–63 (1983).

    Article  Google Scholar 

  29. C. Lu, G. Song, and J. M. Lin, Trends Anal. Chem., 25, 985–995 (2006).

    Article  Google Scholar 

  30. D. B. Lockwood, J. C. Wataha, J. B. Lewis, W. Y. Tseng, R. L. Messer, and S. D. Hsu, Dent. Mater., 21, 683–688 (2005).

    Article  Google Scholar 

  31. M. Feith, T. Vicar, J. Gumulec, M. Raudenska, A. Gjorloff Wingren, M. Masarik, and J. Balvan, Appl. Sci., 10, No. 7, 2597 (2020).

  32. A. C. Croce and G. Bottiroli, Eur. J. Histochem., 58, No. 4, Article ID 2461 (2014).

  33. V. Yu. Plavskii, L. G. Plavskaya, O. N. Dudinova, A. N. Sobchuk, T. S. Ananich, A. V. Mikulich, A. I. Tretʹyakova, and I. A. Leusenko, in: Lasers in Science, Technology, Medicine [in Russian], Vol. 32, V. A. Petrov (Ed.), MNTORES im. A. S. Popova, Moscow (2021), pp. 118–122.

  34. Z. Chen, S. Huang, and M. Liu, Photodermatol. Photoimmunol. Photomed., 38, No. 1, 3–11 (2022).

    Article  Google Scholar 

  35. J. Yang, Q. Fu, H. Jiang, Y. Li, and M. Liu, Front. Oncol., 12, Article ID 1022973 (2022).

  36. B. I. Stepanov, V. A. Mostovnikov, A. N. Rubinov, and I. V. Khokhlov, Dokl. Akad. Nauk SSSR, 236, 1007–1010 (1977).

    Google Scholar 

  37. V. V. Bumah, D. S. Masson-Meyers, O. Awosika, S. Zacharias, and C. S. Enwemeka, Lasers Med. Sci., 36, 1661–1670 (2021).

    Article  Google Scholar 

  38. C. Mignon, N. E. Uzunbajakava, B. Raafs, N. V. Botchkareva, and D. J. Tobin, Sci. Rep., 7, No. 1, Article ID 2797 (2017).

  39. L. Taflinski, E. Demir, J. Kauczok, P. C. Fuchs, M. Born, C. V. Suschek, and C. Oplander, Exp. Dermatol., 23, No. 4, 240–246 (2014).

    Article  Google Scholar 

  40. A. Yoshida, F. Yoshino, T. Makita, Y. Maehata, K. Higashi, C. Miyamoto, S. Wada-Takahashi, S. Takahashi, O. Takahashi, and M. C. I. Lee, J. Photochem. Photobiol., B, 129, 1–5 (2013).

  41. N. Peskova, A. Brilkina, A. Gorokhova, N. Shilyagina, O. Kutova, A. Nerush, A. Orlova, L. Klapshina, V. Vodeneev, and I. Balalaeva, J. Photochem. Photobiol., B, 219, Article ID 112208 (2021).

  42. L. M. Sencha, A. A. Gorokhova, N. N. Peskova, E. I. Cherkasova, and I. V. Balalaeva, J. Biomed. Photonics Eng., 8, No. 4, 040305 (2022).

    Article  Google Scholar 

  43. B. V. Chernyak, D. S. Izyumov, K. G. Lyamzaev, A. A. Pashkovskaya, O. Y. Pletjushkina, Y. N. Antonenko, D. V. Sakharov, K. W. A. Wirtz, and V. P. Skulachev, Biochim. Biophys. Acta, 1757, 525–534 (2006).

    Article  Google Scholar 

  44. J. Huhner, A. Ingles-Prieto, C. Neususs, M. Lammerhofer, and H. Janovjak, Electrophoresis, 36, 518–525 (2015).

    Article  Google Scholar 

  45. C. Oplander, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, J. Photochem. Photobiol., B, 103, No. 2, 118–125 (2011).

  46. J. Liebmann, M. Born, and V. Kolb-Bachofen, J. Invest. Dermatol., 130, No. 1, 259–269 (2010).

    Article  Google Scholar 

  47. V. Yu. Plavskii, A. V. Mikulich, A. I. Tretyakova, L. G. Plavskaya, O. N. Dudinova, T. S. Ananich, A. N. Sobchuk, I. A. Leusenka, S. V. Yakimchuk, Le Hang Dang, and Ngoc Quyen Tran, Trends Photochem. Photobiol., 21, 14 (2022).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Y. Plavskii.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 239–252, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-239-252.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plavskii, V.Y., Plavskaya, L.G., Dudinova, O.N. et al. Endogenous Photoacceptors Sensitizing Photobiological Reactions in Somatic Cells. J Appl Spectrosc 90, 334–345 (2023). https://doi.org/10.1007/s10812-023-01540-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01540-8

Keywords

Navigation