Skip to main content
Log in

Resonance Energy Transfer Between Molecular Rotors SYBR Green Intercalated in DNA

  • Published:
Journal of Applied Spectroscopy Aims and scope

The dependences of the fluorescence intensity and anisotropy of molecular rotors SYBR Green (SG) and double-stranded DNA with 10, 20, and 100 base pairs on their relative concentrations in solutions and on the viscosity of the medium were studied. It was shown that an increase in the fluorescence intensity with an increase in the SG concentration and a subsequent leveling off at a constant value was associated with an initial increase in the number of SG molecules intercalated in DNA and further saturation with the formation of nonfluorescent states. A generalized model that takes into account both internal rotations and rotational diffusion of the molecular complex as a whole was developed to explain the sharp drop in fluorescence anisotropy due to Forster intramolecular energy transfer between DNA-bound SG molecules. The proposed model made it possible to calculate universally the obtained experimental dependences of the fluorescence anisotropy on the viscosity of the medium at various dye/DNA ratios and to estimate the Forster energy transfer rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zipper, H. Brunner, J. Bernhagen, and F. Vitzthum, Nucleic Acids Res., 32, No. 12, e103A (2004).

    Article  Google Scholar 

  2. V. L. Singer, L. J. Jones, S. T. Yue, and R. P. Haugland, Anal. Biochem., 249, 228–238 (1997).

    Article  Google Scholar 

  3. V. Wang, R. Zhou, W. Lin, and P. Wu, Chin. Chem. Phys., 31, 2950–2954 (2020).

    Google Scholar 

  4. K. Mora and S. Nath, J. Phys. Chem. B, 133, 8767–8776 (2019).

    Article  Google Scholar 

  5. A. K. Mora, P. K. Singh, B. S. Patro, and S. Nath, Chem. Commun., 52, 12163–12166 (2016).

    Article  Google Scholar 

  6. E. S. Voropai, M. P. Samtsov, and K. N. Kaplevskii, J. Appl. Spectrosc., 70, 721–728 (2003).

    Article  ADS  Google Scholar 

  7. A. I. Sulatskaya, A. A. Maskevich, I. M. Kuznetsova, V. N. Uversky, and K. K. Turoverov, PLoS One, 5, No. 10, e15385(1–7) (2010).

  8. I. Haq, J. E. Ladbury, B. Z. Chowdhry, T. C. Jenkins, and J. B. Chaires, J. Mol. Biol., 271, 244–257 (1997).

    Article  Google Scholar 

  9. A. I. Dragan, R. Pavlovic, J. B. McGivney, J. R. Casas-Finet, E. S. Bishop, R. J. Strouse, M. A. Schenerman, and C. D. Geddes, J. Fluoresc., 22, 1189–1199 (2012).

    Article  Google Scholar 

  10. M. Okoshi, P. Saparpacorn, Y. Takada, S. Hanogha, and H. Nakai, Bull. Chem. Soc. Jpn., 81, 267–273 (2014).

    Article  Google Scholar 

  11. L. W. Runnels and S. F. Scarlata, Biophys. J., 69, 1569–1583 (1995).

    Article  ADS  Google Scholar 

  12. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

  13. A. P. Blokhin and V. A. Tolkachev, J. Appl. Spectrosc., 77, 6–12 (2010).

    Article  ADS  Google Scholar 

  14. S. K. Noothi, M. Kombrabail, T. K. Kundu, and G. Krishnamoorthy, FEBS J., 276, 541–551 (2009).

    Article  Google Scholar 

  15. L. B.-A. Johansson, P. Edman, and P. O. Westlund, J. Chem. Phys., 105, 10896–10904 (1996).

    Article  ADS  Google Scholar 

  16. C. Carlsson, A. Larsson, M. Bjorkman, M. Jonsson, and B. Albinsson, Biopolymers, 41, No. 5, 481–491 (1997).

    Article  Google Scholar 

  17. P. Wahl, Chem. Phys., 7, 210–219 (1975).

    Article  Google Scholar 

  18. J. Duhamel, J. Kanyo, G. Dinter-Gottlieb, and P. Lu, Biochemistry, 35, 16687–16697 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Povedailo.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 202–210, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-202-210.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhomirov, S.A., Blokhin, A.P., Povedailo, V.A. et al. Resonance Energy Transfer Between Molecular Rotors SYBR Green Intercalated in DNA. J Appl Spectrosc 90, 299–307 (2023). https://doi.org/10.1007/s10812-023-01536-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01536-4

Keywords

Navigation