Skip to main content
Log in

Nanoassemblies Based on Semiconductor Quantum Dots and Porphyrin Molecules: Structure, Exciton–Phonon Interactions, and Relaxation Processes

  • Published:
Journal of Applied Spectroscopy Aims and scope

Experimental temperature dependences (77–293 K) of absorption and photoluminescence spectra of CdSe/ZnS semiconductor quantum dots (QDs) were analyzed based on modern models of exciton–phonon coupling. It was proven that the first excitonic transition absorption band formed with participation primarily of optical phonons of the CdSe core while the photoluminescence properties reflected the interaction of the ZnS layer with optical phonons. Photoluminescence quenching for CdSe/ZnS QDs of various diameters upon formation of nanoassemblies with porphyrin molecules was analyzed in the framework of a quantum-mechanical model. It was shown that the quenching rate constant decreased with increasing QD diameter and that the quenching process under quantum confinement conditions was due to the electron of an excited electron–hole pair tunneling onto the QD surface with subsequent localization on surface traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhong, M. Wang, M. Ghorbani-Asl, J. Zhang, K. H. Ly, Z. Liao, G. Chen, Y. Wei, B. P. Biswal, E. Zschech, I. M. Weidinger, A. V. Krasheninnikov, R. Dong, and X. Feng, J. Am. Chem. Soc., 143, 19992–20000 (2021).

    Article  Google Scholar 

  2. K. Ohta, Physics and Chemistry of Molecular Assemblies, World Scientific, Singapore (2020).

    Book  Google Scholar 

  3. M. F. Bertino, Introduction to Nanotechnology, World Scientific, Singapore (2021).

    Google Scholar 

  4. E. Zenkevich and C. von Borczyskowski, Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics, Pan Stanford Publishing Pte. Ltd., Singapore (2016).

    Google Scholar 

  5. K. Pal, Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications, Jenny Stanford Publishing, USA (2019).

    Book  Google Scholar 

  6. E. I. Zenkevich, T. Blaudeck, C. von Borczyskowski, and D. R. T. Zahn, Macroheterocycles, 13, No. 4, 351–358 (2020).

    Google Scholar 

  7. J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 29, 1304–1319 (1990).

  8. G. M. Whitesides and B. Grzybowski, Science, 295, No. 5564, 2418–2421 (2002).

    Article  ADS  Google Scholar 

  9. V. I. Klimov, in: Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, Marcel Dekker, New York (2003), Ch. 5, pp. 159–214.

  10. O. P. Dimitriev, Chem. Rev., 122, No. 9, 8487–8593 (2022).

    Article  Google Scholar 

  11. A. Issac, S. Jin, and T. Lian, J. Am. Chem. Soc., 130, 11280–11281 (2008).

    Article  Google Scholar 

  12. E. K. Raulerson, D. M. Cadena, M. A. Jabed, C. D. Wight, I. Lee, H. R. Wagner, J. T. Brewster, B. L. Iverson, S. Kilina, and S. T. Padgaonkar, J. Phys. Chem. Lett., 13, 1416–1423 (2022).

    Article  Google Scholar 

  13. R. Clapp, I. L Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, J. Am. Chem. Soc., 126, 301–310 (2004).

    Article  Google Scholar 

  14. E. Zenkevich, F. Cichos, A. Shulga, E. Petrov, T. Blaudeck, and C. von Borczyskowski, J. Phys. Chem. B, 109, 8679–8692 (2005).

    Article  Google Scholar 

  15. S. Padgaonkar, P. T. Brown, Y. Jeong, C. Cherqui, K. N. Avanaki, R. Lopez-Arteaga, S. Irgen-Gioro, Y. Wu, V. K. Sangwan, G. C. Schatz, M. C. Hersam, and E. A. Weiss, J. Phys. Chem. C, 125, 15458–15464 (2021).

    Article  Google Scholar 

  16. T. Blaudeck, E. Zenkevich, F. Cichos, and C. von Borczyskowski, J. Phys. Chem. C, 112, 20251–20257 (2008).

    Article  Google Scholar 

  17. E. I. Zenʹkevich, A. P. Stupak, D. Koverko, and C. von Borczyskowski, Zh. Éksp. Teor. Khim., 48, No. 1, 18–28 (2012).

    Google Scholar 

  18. C. M. Perez, D. Ghosh, O. Prezhdo, S. Tretiak, and A. J. Neukirch, J. Phys. Chem. Lett., 12, 1005–1011 (2021).

    Article  Google Scholar 

  19. B. I. Stepanov, Luminescence of Complex Molecules [in Russian], AN BSSR, Minsk (1955).

  20. B. I. Stepanov and V. P. Gribkovskii, Introduction to the Theory of Luminescence [in Russian], AN BSSR, Minsk (1963); London, Ilisse Books (1968, 1970).

  21. V. P. Gribkovskii, Theory of Absorption and Emission of Light in Semiconductors [in Russian], Nauka i Tekhnika, Minsk (1975).

  22. V. P. Gribkovskii, Semiconducting Lasers [in Russian], Izd. Universitetskoe, Minsk (1988).

    Google Scholar 

  23. V. P. Gribkovskii and B. I. Stepanov, Dokl. Akad. Nauk SSSR, 183, No. 1, 67–70 (1968).

    Google Scholar 

  24. S. V. Gaponenko, Fiz. Tekh. Poluprovodn., 30, 577–619 (1996).

    Google Scholar 

  25. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press (1998).

  26. S. V. Gaponenko, H. Kalt, and U. Woggon, Semiconductor Quantum Structures. Optical Properties, 34, Pt. 2, Springer (2004); doi: https://doi.org/10.1007/b98078.

  27. S. V. Gaponenko, Introduction to Nanophotonics, Cambridge University Press (2010), doi: https://doi.org/10.1017/CBO9780511750502.

    Article  ADS  Google Scholar 

  28. S. V. Gaponenko, in: Nano-Optics: Principles Enabling Basic Research and Applications, Springer, Dordrecht (2017), pp. 173–189.

    Book  Google Scholar 

  29. S. V. Gaponenko and H. V. Demir, Applied Nanophotonics, Cambridge University Press (2018).

  30. E. I. Zenʹkevich, A. M. Shulʹga, S. M. Bachilo, U. Rempelʹ, A. Villert, and C. von Borczyskowski, in: Photobiology and Membrane Biophysics [in Russian], Tekhnoprint, Minsk (1999), pp. 221–243.

  31. E. Petrov, C. von Borczyskowski, E. Zenkevich, A. Shulga, F. Cichos, S. Gaponenko, A. Rogach, D. Talapin, and H. Weller, Book of Abstracts of Deutsche Physikalische Gesellschaft (DPG), Spring Meeting of the Division of Condensed Matter Physics, March 24–28, 2003, Dresden (2003), CPP 13.4.

    Google Scholar 

  32. F. Cichos, C. von Borczyskowski, E. Petrov, E. Zenkevich, A. Shulga, S. Gaponenko, A. Rogach, D. Talapin, and H. Weller, Book of Abstracts of Deutsche Physikalische Gesellschaft (DPG), Spring Meeting of the Division of Condensed Matter Physics, May 24–28, 2003, Dresden (2003), CPP 22.29.

    Google Scholar 

  33. E. I. Zenkevich, S. V. Gaponenko, E. I. Sagun, and C. von Borczyskowski, in: Reviews in Nanoscience and Nanotechnology, W. Chen, Y. Zhao, and P. Juzenas (eds.), Am. Sci. Publ., USA, 2, No. 3, 184–207 (2013).

  34. E. I. Zenkevich and C. von Borczyskowski, in: Multiporphyrin Arrays: Fundamentals and Applications, D. Kim (Ed.), Pan Stanford Publishing Pte. Ltd., Singapore (2012), Ch. 5, pp. 217–288.

  35. E. I. Zenkevich and C. von Borczyskowski, in: Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine, Vol. 22, Biophysical and Physicochemical Studies of Tetrapyrroles, K. Kadish, K. M. Smith, and R. Guilard (Eds.), World Scientific Publishing Co. Pt. Ltd., Singapore (2012), Ch. 104, pp. 68–159.

  36. C. von Borczyskowski and E. Zenkevich, in: Quantum Dot Molecules, Lecture Notes in Nanoscale Science and Technology 14, Springer Series in Materials Science, J. Wu and Z. M. Wang (Eds.), Springer Science+Business Media, New York (2014), pp. 77–148.

  37. E. Zenkevich and C. von Borczyskowski, in: Photoinduced Processes at Surfaces and in Nanomaterials, ACS Symposium Series, D. Kilin (Ed.), Am. Chem. Soc., Washington (2015), 1196, Ch. 12, pp. 235–272.

  38. C. von Borczyskowski and E. Zenkevich, Tuning Semiconducting and Metallic Quantum Dots: Spectroscopy and Dynamics, Pan Stanford Publishing Pte. Ltd., Singapore (2017).

    Book  Google Scholar 

  39. D. S. Kilin, K. Tsemekhman, O. V. Prezhdo, E. I. Zenkevich, and C. von Borczyskowski, J. Photochem. Photobiol., A, 190, 342–354 (2007).

  40. C. De Mello Donega, M. Bode, and A. Meijerink, Phys. Rev. B: Condens. Matter Mater. Phys., 74, Article ID 085320 (2006).

  41. V. I. Klimov, Annu. Rev. Phys. Chem., 58, 635–673 (2007).

    Article  ADS  Google Scholar 

  42. S. F. Wuister, C. De Mello Donega, M. Bode, and A. Meijerink, J. Am. Chem. Soc., 126, 10397–10402 (2004).

  43. D. M. Sagar, R. R. Cooney, S. L. Sewall, E. A. Dias, M. M. Barsan, J. S. Butler, and P. Kambhampati, Phys. Rev. B: Condens. Matter Mater. Phys., 77, Article ID 235321 (2008).

  44. T. J. Liptay, L. F. Marshall, P. S. Rao, R. J. Ram, and M. G. Bawendi, Phys. Rev. B: Condens. Matter Mater. Phys., 76, Article ID 155314 (2007).

  45. Y. P. Varshni, Physica, 34, 149–154 (1967).

    Article  ADS  Google Scholar 

  46. G. D. Cody, in: Hydrogenated Amorphous Silicon, Semiconductors and Semimetals, J. I. Pankove (Ed.), 21, Academic, New York (1984), pp. 11–79.

  47. D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Phys. Rev. B: Condens. Matter Mater. Phys., 71, Article ID 235409 (2005).

  48. J. Lee, E. S. Koteles, and M. O. Vassell, Phys. Rev. B, 33, Article ID 5512 (1986).

  49. E. I. Zenkevich, A. Stupak, C. Goehler, C. Krasselt, and C. von Borczyskowski, ACS Nano, 9, 2886–2907 (2015).

    Article  Google Scholar 

  50. E. I. Zenʹkevich and C. von Borczyskowski, Izv. Ross. Akad. Nauk, Ser. Khim., No. 7, 1220–1230 (2018).

  51. B. Valeur, Molecular Fluorescence. Principles and Applications, Wiley-VCH, Weinheim (2002).

  52. H. Sun, P. Cavanaugh, I. Jen-La Plante, M. J. Bautista, R. Ma, and D. F. Kelley, J. Phys. Chem. C, 126, 20065–20073 (2022).

  53. E. I. Zenʹkevich, E. I. Sagun, A. A. Yarovoi, A. M. Shulʹga, V. N. Knyukshto, A. P. Stupak, and C. von Borszyskowski, Opt. Spektrosk., 103, No. 6, 998–1009 (2007).

    Article  ADS  Google Scholar 

  54. R. A. Marcus, Rev. Mod. Phys., 65, 599–610 (1993).

    Article  ADS  Google Scholar 

  55. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B, 101, 9463–9475 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Zenkevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 191–201, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-191-201.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkevich, E.I., Gaponenko, S.V. & Borczyskowski, C.v. Nanoassemblies Based on Semiconductor Quantum Dots and Porphyrin Molecules: Structure, Exciton–Phonon Interactions, and Relaxation Processes. J Appl Spectrosc 90, 289–298 (2023). https://doi.org/10.1007/s10812-023-01535-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01535-5

Keywords

Navigation