Skip to main content
Log in

Multivariate Calibration of the Composition of Low-Alloy Steels Using Preprocessed Low-Resolution Emission Spectra with Spectral Variables Selection

  • Published:
Journal of Applied Spectroscopy Aims and scope

The C, Mn, Si, Cr, Ni, and Cu concentrations were calibrated from low-resolution laser-induced breakdown spectra of low-alloy steel reference standards. Multivariate calibration models for all considered elements were built based on data preprocessing in the form of normalizing spectra to the Fe II 252.0609-nm emission line and baseline correction in addition to selection of spectral variables using an original method of searching a combination of moving windows for a partial least-squares method. The characteristics of the models were a root-mean-square error and residual predictive deviation (RPD) of 0.04% and 4.7 for C (at concentrations up to 0.7%); 0.02% and 24.8 for Mn (up to 1.9%); 0.01% and 12.9 for Si (up to 0.9%); 0.01% and 21.8 for Cr (up to 1%); 0.007% and 23.3 for Ni (up to 0.7%); 0.006% and 23.2 for Cu (up to 0.5%), respectively. The models were quantitative (RPD > 3) for the six considered elements including C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wei, R. S. Varanasi, T. Schwarz, L. Gomell, H. Zhao, D. J. Larson, B. Sun, G. Liu, H. Chen, D. Raabe, and B. Gault, Patterns, 2, Article ID 100192 (2021).

  2. S. Grunberger, S. Eschlbock-Fuchs, J. Hofstadler, A. Pissenberger, H. Duchaczek, S. Trautner, and J. D. Pedarnig, Spectrochim. Acta, Part B, 169, Article ID 105884 (2020).

  3. M. W. Vaughan, P. Samimi, S. L. Gibbons, R. A. Abrahams, R. C. Harris, R. E. Barber, and I. Karaman, Scripta Mater., 184, 63–69 (2020).

    Article  Google Scholar 

  4. Ch. J. Rao, S. Ningshen, and J. Philip, Spectrochim. Acta, Part B, 172, Article ID 105973 (2020).

  5. L. Quackatz, A. Griesche, and T. Kannengiesser, Forces Mech., 6, Article ID 100063 (2022).

  6. V. Motto-Ros, D. Syvilay, L. Bassel, E. Negre, F. Trichard, F. Pelascini, J. El Haddad, A. Harhira, S. Moncayo, J. Picard, D. Devismes, and B. Bousquet, Spectrochim. Acta, Part B, 140, 54–64 (2018).

    Article  ADS  Google Scholar 

  7. T. A. Labutin, A. M. Popova, S. M. Zaytsev, N. B. Zorova, M. V. Belkov, V. V. Kiris, and S. N. Raikov, Spectrochim. Acta, Part B, 99, 94–100 (2014).

    Article  ADS  Google Scholar 

  8. M. V. Belkov, D. A. Borisevich, K. Y. Catsalap, and M. A. Khodasevich, J. Appl. Spectrosc., 88, 970–974 (2021).

    Article  ADS  Google Scholar 

  9. M. V. Belkov, D. A. Borisevich, K. Yu. Katsalap, and M. A. Khodasevich, Opt. Spectrosc., 10, 1611–1616 (2022).

    Google Scholar 

  10. P. Geladi and B. R. Kowalski, Anal. Chim. Acta, 185, 1–17 (1986).

    Article  Google Scholar 

  11. S. Nawar and A. M. Mouazen, Comput. Electron. Agric., 151, 469–477 (2018).

    Article  Google Scholar 

  12. Standard Practices for Infrared Multivariate Quantitative Analysis (ST RK ASTM E 1655–2011).

  13. G. Schulze, A. Jirasek, M. M. L. Yu, A. Lim, R. F. B. Turner, and M. W. Blades, Appl. Spectrosc., 59, 545–574 (2005).

    Article  ADS  Google Scholar 

  14. Z. M. Zhang, S. Chen, and Y. Z. Liang, Analyst, 135, 1138–1146 (2010).

    Article  ADS  Google Scholar 

  15. https://code.google.com/archive/p/airpls/.

  16. A. A. Gomes, S. M. Azcarate, P. H. Goncalves Dias Diniz, D. D. S. Fernandes, and G. Veras, Food Chem., 370, 1–13 (2022).

  17. Z. Xiaobo, Z. Jiewen, M. J. W. Povey, M. Holmes, and M. Hanpin, Anal. Chim. Acta, 667, 14–32 (2010).

    Article  Google Scholar 

  18. S. F. C. Soares, A. A. Gomes, M. C. U. Araujo, A. R. G. Filho, and R. K. H. Galvao, Trends Anal. Chem., 42, 84–98 (2013).

    Article  Google Scholar 

  19. M. Khodasevich and V. Aseev, Opt. Spectrosc., 124, 748–752 (2018).

    Article  ADS  Google Scholar 

  20. Y. P. Du, Y. Z. Liang, J. H. Jiang, R. J. Berry, and Y. Ozaki, Anal. Chim. Acta, 501, 183–191 (2004).

    Article  Google Scholar 

  21. R. Zornoza, C. Guerrero, J. Mataix-Solera, K. M. Scow, V. Arcenegui, and J. Mataix-Beneyto, Soil Biol. Biochem., 40, 1923–1930 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Korolko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 2, pp. 174–179, March–April, 2023. https://doi.org/10.47612/0514-7506-2023-90-2-174-179.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkov, M.V., Catsalap, K.Y., Korolko, D.A. et al. Multivariate Calibration of the Composition of Low-Alloy Steels Using Preprocessed Low-Resolution Emission Spectra with Spectral Variables Selection. J Appl Spectrosc 90, 274–278 (2023). https://doi.org/10.1007/s10812-023-01532-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01532-8

Keywords

Navigation