Skip to main content
Log in

Non-Photochemical Quenching of Chlorophyll a Fluorescence as an Indicator of the State of a Plant Photosynthetic Apparatus Under Abiotic Stress

  • Published:
Journal of Applied Spectroscopy Aims and scope

The parameters of chlorophyll a (Chl a) fluorescence of the primary leaves of 7-day-old barley sprouts under the impact of elevated temperature (40°C, 3 h) and water deficit (45 h in 3% PEG 6000) were studied. The potential and effective quantum yields of photochemical reactions of photosystem II and the photochemical (qP) and non-photochemical quenching (qN) of Chl a fluorescence were shown not to change significantly under these stress factors. High stress sensitivity was found for the coefficient of energy-dependent quenching of Chl a fluorescence (qE) related linearly with the magnitude of the H+ gradient across the thylakoid membrane. Because the qE value is an integral indicator dependent on the light and dark photosynthetic reactions, it was proposed to use this parameter as a marker of the stress state in the photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Nowicka, J. Ciura, R. Szymanska, and J. Kruk, J. Plant. Physiol., 231, 415–433 (2018).

    Article  Google Scholar 

  2. F. Yang, S. Huang, R. Gao, W. Liu, T. Yong, and X. Wang, Field Crop. Res., 155, 245–253 (2014).

    Article  Google Scholar 

  3. L. Feng, M. A. Raza, Z. Li, Y. Chen, M. H. B. Khalid, J. Du, W. Liu, X. Wu, C. Song, L. Yu, Z. Zhang, S. Yuan, W. Yang, and F. Yang, Front. Plant. Sci., 9, 1952 (2019).

    Article  Google Scholar 

  4. H. Griffiths and M. A. J. Parry, Ann. Bot. (Oxford, U. K.), 89, 801–802 (2002).

  5. M. M. Chaves, J. Flexas, and C. Pinheiro, Ann. Bot. (Oxford, U. K.), 103, 551–560 (2009).

  6. M. C. Dias and W. Bruggemann, Photosynthetica, 48, 96–102 (2011).

    Article  Google Scholar 

  7. Z. Yang, J. L. Li, L. N. Liu, Q. Xie, and N. Sui, Front. Plant. Sci., 10, 1722 (2020).

    Article  Google Scholar 

  8. Y. Yamane, Y. Kashino, H. Koike, and K. Satoh, Photosynth. Res., 57, 51–59 (1998).

    Article  Google Scholar 

  9. B. Barnabas, K. Jager, and A. Feher, Plant, Cell Environ., 31, 11–38 (2008).

    Google Scholar 

  10. C.E. Bita and T. Gerats, Front. Plant. Sci., 4, 273 (2013).

    Article  Google Scholar 

  11. B. C. Posch, B. C. Kariyawasam, H. Bramley, O. Coast, R. A. Richards, M. P. Reynolds, and O. K. Atkin, J. Exp. Bot., 70, No. 19, 5051–5069 (2019).

    Article  Google Scholar 

  12. A. Baryla, P. Carrier, F. Franck, C. Coulomb, C. Sahut, and M. Havaux, Planta, 212, 696–709 (2001).

    Article  Google Scholar 

  13. E. A. Lysenko, A. A. Klaus, N. L. Pshybytko, and V. V. Kusnetsov, Photosynth. Res., 125, 291–303 (2015).

    Article  Google Scholar 

  14. K. Yan, S. Zhao, M. Cui, G. Han, and P. Wen, Plant Physiol. Biochem., 125, 239–246 (2018).

    Article  Google Scholar 

  15. J. Pan, R. Sharif, X. Xu, and X. Chen, Front. Plant. Sci., 10, Article ID 627331 (2021).

  16. P. Hader, M. Kofferlein, H. K. Seidlitz, and F. Ghetti, J. Photochem. Photobiol., B, 34, No. 1, 21–28 (1996).

  17. S. Kataria, A. Jajoo, and K. N. Guruprasad, J. Photochem. Photobiol., B, 137, 55–66 (2014).

  18. K. Rohacek and M. Bartak, Photosynthetica, 37, No. 3, 339–363 (1999).

    Article  Google Scholar 

  19. N. R. Baker, Annu. Rev. Plant Biol., 59, 89–113 (2008).

    Article  Google Scholar 

  20. G. H. Krause and E. Weis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313–349 (1991).

    Article  Google Scholar 

  21. T. Yamasaki, T. Yamakawa, Y. Yamane, H. Koike, K. Satoh, and S. Katoh, Plant Physiol., 128, 1087–1097 (2002).

    Article  Google Scholar 

  22. Y. Marutani, Y. Yamauchi, and Y. Kimura, Planta, 236, 753–761 (2012).

    Article  Google Scholar 

  23. Y. Yamamoto, Front. Plant. Sci., 7, 1136 (2016).

    Article  Google Scholar 

  24. J. Essemine, M. Qu, H. Mi, and X.-G. Zhu, Front. Plant Sci., 7, 383 (2016).

    Google Scholar 

  25. J. A. Lauriano, F. C. Lidos, C. A. Carvalho, P. S. Campos, and M. C. Matos, Photosynthetica, 38, No. 1, 7–12 (2000).

    Article  Google Scholar 

  26. P. F. Rokitskii, Biological Statistics [in Russian], Vysheishaya Shkola, Minsk (1973).

  27. V. V. Klimov, V. A. Klevanik, V. A. Shuvalov, and A. A. Krasnovsky, FEBS Lett., 82, No. 2, 183–186 (1977).

    Article  Google Scholar 

  28. A. Laisk, V. Oja, and B. Rasulov, Plant. Physiol., 115, No. 2, 803–815 (1997).

    Article  Google Scholar 

  29. P. H. Lambrev, Y. Miloslavina, P. Jahns, and A. R. Holzwarth, Biochim. Biophys. Acta, Bioenerg., 1817, No. 5, 760–769 (2012).

  30. A. V. Ruban, Plant Physiol., 170, No. 4, 1903–1916 (2016).

    Article  Google Scholar 

  31. P. Pospisil, Photosynthetica, 34, No. 3, 343–355 (1998).

    Article  Google Scholar 

  32. C. Kulheim, J. Agren, and S. Jansson, Science, 297, 91–93 (2002).

    Article  ADS  Google Scholar 

  33. R. G. Walters and P. Horton, Photosynth. Res., 27, No. 2, 121–133 (1991).

    Article  Google Scholar 

  34. P. Jahns and A. R. Holzwarth, Biochim. Biophys. Acta, 1817, No. 1, 182–193 (2012).

    Article  Google Scholar 

  35. A. V. Ruban and E. H. Murchie, Biochim. Biophys. Acta, 1817, No. 7, 977–982 (2012).

    Article  Google Scholar 

  36. J. D. Rochaix, Annu. Rev. Plant Biol., 65, 287–309 (2014).

    Article  Google Scholar 

  37. N. Pshybytko, J. Kruk, L. Kabashnikova, and K. Strzalka, Biochim. Biophys. Acta, Bioenerg., 1777, No. 11, 1393–1399 (2008).

  38. N. L. Pshibytko, L. N. Kalitukho, and L. F. Kabashnikova, Fiziol. Rast., 50, No. 1, 51–58 (2003).

    Google Scholar 

  39. N. L. Pshibytko, L. N. Kalitukho, N. B. Zhavoronkova, and L. F. Kabashnikova, Biol. Membr., 20, No. 2, 121–127 (2003).

    Google Scholar 

  40. N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, Planta, 212, Nos. 5–6, 749–758 (2001).

    Article  Google Scholar 

  41. D. V. Yanykin, A. A. Khorobrykh, S. A. Khorobrykh, N. L. Pshybytko, and V. V. Klimov, Photosynth. Res., 117, Nos. 1–3, 367–374 (2013).

    Article  Google Scholar 

  42. U. Schreiber and C. Neubauer, Photosynth. Res., 25, No. 3, 279–293 (1990).

    Article  Google Scholar 

  43. A. V. Ruban, D. Rees, A. A. Pascal, and P. Horton, Biochim. Biophys. Acta, 1102, No. 1, 39–44 (1992).

    Article  Google Scholar 

  44. P. Muller, X. P. Li, and K. K. Niyogi, Plant Physiol., 125, No. 4, 1558–1566 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Pshybytko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 1, pp. 67–73, January–February, 2023. https://doi.org/10.47612/0514-7506-2023-90-1-67-73

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshybytko, N.L. Non-Photochemical Quenching of Chlorophyll a Fluorescence as an Indicator of the State of a Plant Photosynthetic Apparatus Under Abiotic Stress. J Appl Spectrosc 90, 60–65 (2023). https://doi.org/10.1007/s10812-023-01503-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01503-z

Keywords

Navigation