Skip to main content
Log in

Synthesis, Characterization, and Phosphate Anion Recognition Properties of Triethylene Glycol Bridged Oligourea Receptors

  • Published:
Journal of Applied Spectroscopy Aims and scope

Two triethylene glycol bridged oligourea receptors R1 and R2 were synthesized and characterized by 1H NMR, FT-IR, melting-point method and elemental analysis. The recognition properties of \({\mathrm{PO}}_{4}^{3-}\) were studied by naked eye recognition and UV-Vis spectroscopy. The Job’s plot analysis confirmed that the receptor R1 and \({\mathrm{PO}}_{4}^{3-}\) formed a complex at a molar ratio of 3:2 while the binding ratio of R2 to \({\mathrm{PO}}_{4}^{3-}\) was 1:1. The R1 recognized \({\mathrm{PO}}_{4}^{3-}\) with a complexing constant of 1.46 × 105 M–1, and the complex constant of R2 recognizing \({\mathrm{PO}}_{4}^{3-}\) was 2.75 × 105 M–1. In addition, the hydrogen bond between R1 and R2 with \({\mathrm{PO}}_{4}^{3-}\) was examined with the method of alcohol effect by adding competitive solvent ethanol to the DMSO system. Furthermore, the recognition of \({\mathrm{PO}}_{4}^{3-}\) by R1 and R2 was investigated through competitive measurements by adding other anions with the same concentration to the system. This study provides a simple and fast method for phosphate anion recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zapata, S. J. Benitez-Benitez, P. Sabater, A. Caballero, and P. Molina, Molecules, 22, 2273 (2017).

    Article  Google Scholar 

  2. I. Ravikumar and P. Ghosh, Chem. Soc. Rev., 41, 3077–3098 (2012).

    Article  Google Scholar 

  3. J. W. Steed, Chem. Soc. Rev., 38, 506–519 (2009).

    Article  Google Scholar 

  4. J. L. Sessler, E. Katayev, G. D. Pantos, and Y. A. Ustynyuk, Chem. Commun., 1276–1277 (2004).

  5. P. D. Beer, Chem. Commun., 689–696 (1996).

  6. N. Busschaert, C. Caltagirone, W. Rossom, and P. A. Gale, Chem. Rev., 115, 8038–8155 (2015).

    Article  Google Scholar 

  7. X. Wu, A. M. Gilchrist, and P. A. Gale, Chem, 6, 1296–1309 (2020).

    Article  Google Scholar 

  8. J. Zhao, D. Yang, X. Yang, and B. Wu, Coord. Chem. Rev., 378, 415–444 (2018).

    Article  Google Scholar 

  9. K. Bowman-James, Acc. Chem. Res., 38, No. 8, 671–678 (2005).

    Article  Google Scholar 

  10. A. E. Hargrove, S. Nieto, T. Zhang, and V. E. Anslyn, Chem. Rev., 111, 6603–6782 (2011).

    Article  Google Scholar 

  11. J. F. Kornecki, D. Carballares, and R. Morellon-Sterling, Proc. Biochem., 95, 288–296 (2020).

    Article  Google Scholar 

  12. S. Aoki and E. Kimura, Rev. Mol. Biotechnol., 90, 129–155 (2020).

    Article  Google Scholar 

  13. C. Pinyorospathum, P. Rattanarat, S. Chaiyo, W. Siangproh, and O. Chailapakul, Sensor. Actuat. BChem., 290, 226–232 (2019).

  14. B. Liu, D. Yang, R. Zhao, R. Zhou, T. Ying, J. Zhang, J. Zhang, and H. Wang, Dyes Pigments, 133, 127–131 (2016).

    Article  Google Scholar 

  15. Y. Chen, K. Lo, Y. Wang, C. Chiu, and C. Hu, Sci. Rep-uk., 10, 1 (2020).

    Article  ADS  Google Scholar 

  16. H. N. Bhatti, J. Hayat, M. Iqbal, S. Noreen, and S. Nawaz, J. Mater. Res. Technol., 308, 300–307 (2018).

    Article  Google Scholar 

  17. M. An, B. Kim, H. Seo, A. Helal, and H. Kim, Spectrochim. Acta A, 169, 87–94 (2016).

    Article  ADS  Google Scholar 

  18. H. Xu, D. Yang, D. Jiang, and H. Chen, Front. Chem., 7 (2019).

  19. P. Smith, M. Reddington, and C. Wilcox, Tetrahedron Lett., 33, 6085–6088 (1992).

    Article  Google Scholar 

  20. C. R. Bondy, P. A. Gale, and S. Loeb, J. Am. Chem. Soc., 126, 5030–5031 (2004).

    Article  Google Scholar 

  21. V. Amendola, M. Boiocchi, B. Colasson, and L. Fabbrizzi, Inorg. Chem., 45, 6138–6147 (2006).

    Article  Google Scholar 

  22. B. P. Hay, T. K. Firman, and B. Moyer, J. Am. Chem. Soc., 127, 1810–1819 (2005).

    Article  Google Scholar 

  23. R. Li, Y. Zhao, S. Li, P. Yang, X. Huang, X. Yang, and B. Wu, Inorg. Chem., 52, 5851–5860 (2013).

    Article  Google Scholar 

  24. G. D. Kim, S. Bothra, S. K. Sahoo, and H. J. Choi, J. Incl. Phenom. Macro., 95, 215–221 (2019).

    Article  Google Scholar 

  25. V. Amendola, M. Boiocchi, B. Colasson, and L. Fabbrizzi, Inorg. Chem., 45, 6138–6147 (2006).

    Article  Google Scholar 

  26. L. M. Tsay, J. S. Shih, and C. Wu, Analyst., 108, 1108–1113 (1987).

    Article  ADS  Google Scholar 

  27. D. Duan, B. Su, Z. Bao, Y. Yang, and Q. Ren, J. Supercrit. Fluids, 42–47 (2019).

  28. M. Kazemabad, A. Verliefde, E. R. Cornelissen, and A. D’Haese, J. Membrane Sci., 595, Article ID 117432 (2019).

  29. Y. Wu, S. Zheng, Y. Ye, H. Guo, and F. Yang, Photochem. Photobiol. A, Chemistry, 412, Article ID 113219 (2021).

  30. C. Huang, D. Zhang, J. Qu, X. Liu, and Y. Liu, Aust. J. Chem., 70, 705–711 (2017).

    Article  Google Scholar 

  31. T. Oshima, A. Suetsugu, and Y. Baba, Anal. Chim. Acta, 674, 211–219 (2010).

    Article  Google Scholar 

  32. G. V. Jancarlo, A. M. Ramón, S. O. Hisila, and O. C. David, Supramol. Chem., 1–14 (2019).

  33. R. Custelcean, Chem. Commun., 39, 295–307 (2008).

    Article  Google Scholar 

  34. S. Wang, Z. Huang, A. Li, Y. Zhao, W. Zuo, Y. Li, H. Miao, J. Ma, W. Sun, X. Wang, L. Cao, B. Wu, and C. Jia, Angew. Chem. Int. Ed., 60, Article ID 9573 (2021).

  35. U. Manna, B. Portis, T. K. Egboluche, M. Nafis, and M. A. Hossain, Front. Chem., 8, Article ID 575701 (2021).

  36. D. Marquis, J. P. Desvergne, and H. Bouas-Laurent, J. Org. Chem., 60, 7984–7996 (1995).

    Article  Google Scholar 

  37. Y. Chen and G. Baker, J. Org. Chem., 64, 6870–6873 (1999).

    Article  Google Scholar 

  38. G. C. Eastmond and J. Paprotny, Polymer, 43, No. 12, 3455–3468 (2002).

    Article  Google Scholar 

  39. L. Ji, Z. Yang, Y. Zhao, S. Meng, and B. Wu, Chem. Commun., 52, 7310–7313 (2016).

    Article  Google Scholar 

  40. K. Rouzi, A. Abulikemu, J. Zhao, and B. Wu, RSC Adv., 7, 50920–50927 (2017).

    Article  ADS  Google Scholar 

  41. A. Okudan, S. Erdemir, and O. Kocyigit, J. Mol. Struct., 1048, 392–398 (2013).

    Article  ADS  Google Scholar 

  42. J. S. Kim, O. J. Shon, and S. H. Yang, J. Org. Chem., 67, 6514–6518 (2002).

    Article  Google Scholar 

  43. J. S. Renny, L. L. Tomasevich, E. H. Tallmadge, and D. B. Collum, Angew. Chem., 52, 11998–12013 (2013).

    Article  Google Scholar 

  44. Z. Yang, C. Li, X. Liu, S. Zhao, and X. Chen, Z. Anorg. All. Chem., 646, 1324–1330 (2020).

    Google Scholar 

  45. Z. Yang, S. Sun, Y. Liu, X. Liu, S. Zhao, Z. Zhang, X. Chen, Z. Yang, and X. Jia, Indian J. Chem., 58, 1302–1310 (2019).

    Google Scholar 

  46. R. Sakai, S. Okade, E. B. Barasa, R. Kakuchi, M. Ziabka, S. Umeda, K. Tsuda, T. Satoh, and T. Kakuchi, Macromolecules, 43, 7406–7411 (2010).

    Article  ADS  Google Scholar 

  47. J. Bourson, J. Pouget, and B. Valeur, J. Phys. Chem., 97, 457–470 (1993).

    Article  Google Scholar 

  48. B. Valeur, J. Pouget, and J. Bourson, J. Phys. Chem., 96, 6545–6549 (1992).

    Article  Google Scholar 

  49. A. Gutiérrez, M. Alavianmehr, S. Hosseini, R. Ahmadi, and S. Aparicio, J. Mol. Liq., 300, Article ID 112331 (2019).

  50. Z. Yang, Y. Wang, X. Liu, R. T. Vanderlinden, P. J. Stang, R. Ni, and X. Li, J. Am. Chem. Soc., 142, 13689–13694 (2020).

    Article  Google Scholar 

  51. K. Dharmalingam, K. Ramachandran, and P. Sivagurunathan, Main Group Chem., 4, No. 4, 273–278 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaiwen Yang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 6, p. 898, November–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liu, J., Sun, S. et al. Synthesis, Characterization, and Phosphate Anion Recognition Properties of Triethylene Glycol Bridged Oligourea Receptors. J Appl Spectrosc 89, 1158–1167 (2023). https://doi.org/10.1007/s10812-023-01482-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01482-1

Keywords

Navigation