Skip to main content
Log in

Optimal Focusing Conditions for Two-Dimensional Gaussian Light Beams with Arbitrary Input Polarization in a Strontium–Barium Niobate Photorefractive Crystal

  • Published:
Journal of Applied Spectroscopy Aims and scope

A mathematical model of the propagation of two-dimensional linearly polarized Gaussian light beams taking into account all components of the linear electrooptic tensor was constructed for calculating nonlinear optical phenomena in a strontium–barium niobate photorefractive crystal. The dependence of the light-beam intensity on its initial polarization azimuth at the entrance to the crystal and on the direction vector in the crystallographic coordinate system of an external electric field applied to a photorefractive crystal was investigated. The conditions under which the focusing of two-dimensional Gaussian light beams at the exit from the crystal was maximal were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cuniot-Ponsard, in: Ferroelectrics Material Aspects, M. Lallart (Ed.), InTechOpen (2011), Chap. 23, pp. 498–518.

  2. L. Stoyanov, G. Maleshkov, I. Stefanov, and A. Dreischuh, J. Opt. Soc. Am. B, 31, 1159–1164 (2014).

    Article  ADS  Google Scholar 

  3. A. Keshavarz, Z. Abbasib, and M. Hatamia, Int. J. Opt. Photonics, 6, No. 1, 13–20 (2012).

    Google Scholar 

  4. N. Dimitrov, L. Stoyanov, I. Stefanov, A. Dreischuh, P. Hansinger, and G. G. Paulus, Bulg. J. Phys., 43, 21–29 (2016).

    Google Scholar 

  5. F. Diebel, B. M. Bokic, D. V. Timotijevic, D. M. Jovic Savic, and C. Denz, Opt. Express, 23, No. 19, 24351–24361 (2015).

  6. R. Allio, D. Guzman-Silva, C. Cantillano, L. Morales-Inostroza, D. Lopez-Gonzalez, S. Etcheverry, R. A. Vicencio, and J. Armijo, J. Opt., 17, No. 2, Article ID 049601 (2015).

  7. T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelinek, Jr., V. Kubecek, and H. Jelinkova, Laser Phys. Lett., 9, No. 7, 519–523 (2012).

    Article  ADS  Google Scholar 

  8. A. A. Vasil′ev, D. Kasasent, I. N. Kompanets, and A. V. Parfenov, Spatial Light Modulators [in Russian], Radio i Svyaz′, Moscow (1987).

  9. W. Krolikowski, B. Luther-Davies, and C. Denz, IEEE J. Quantum Electron., 39, 3–12 (2003).

    Article  ADS  Google Scholar 

  10. M. Tiemann, T. Halfmann, and T. Tschudi, Opt. Commun., 282, 3612–3619 (2009).

    Article  ADS  Google Scholar 

  11. M. Wesner, C. Herden, and D. Kip, Appl. Phys. B: Lasers Opt., 72, 733–736 (2001).

    Article  ADS  Google Scholar 

  12. N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, S. Sears, and M. Segev, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 66, 602–607 (2002).

  13. M. Petrovic, D. Jovic, M. Belic, J. Schroder, Ph. Jander, and C. Denz, Phys. Rev. Lett., 95, 901–904 (2005).

    Article  Google Scholar 

  14. J. Imbrock, C. Heese, and C. Denz, Appl. Phys. B: Lasers Opt., 95, 261–268 (2009).

    Article  ADS  Google Scholar 

  15. C. Rotschild, O. Cohen, O. Manela, T. Carmon, and M. Segev, J. Opt. Soc. Am. B, 21, No. 7, 1355–1357 (2004).

    Article  ADS  Google Scholar 

  16. S. D. Barsukov, S. A. Khakhomov, and I. V. Semchenko, Izv. GGU im. F. Skoriny, 6, 34–39 (2011).

    Google Scholar 

  17. A. V. Shishkin, V. S. Cherednichenko, A. N. Cherepanov, and V. V. Marusin, Materials Science. Technology of Construction Materials, Study Guide [in Russian], Omega-L, Moscow (2009).

  18. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics, 22, 949–960 (1979).

    Article  ADS  Google Scholar 

  19. K. Motzek, Opt. Commun., 197, 161–168 (2001).

    Article  ADS  Google Scholar 

  20. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley, New York (1984).

    Google Scholar 

  21. M. P. Petrov, Photorefractive Crystals in Coherent Optics [in Russian], Nauka, St. Petersburg (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Davydouskaya.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 6, pp. 884–889, November–December, 2022. https://doi.org/10.47612/0514-7506-2022-89-6-884-889.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydouskaya, V.V., Naunyka, V.N. & Velichko, V.A. Optimal Focusing Conditions for Two-Dimensional Gaussian Light Beams with Arbitrary Input Polarization in a Strontium–Barium Niobate Photorefractive Crystal. J Appl Spectrosc 89, 1137–1142 (2023). https://doi.org/10.1007/s10812-023-01478-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01478-x

Keywords

Navigation