Skip to main content
Log in

Mixed Gas Concentration Inversion Based on the Ultraviolet Absorption Spectrum by a Hierarchical Convolutional Neural Network

  • Published:
Journal of Applied Spectroscopy Aims and scope

A hierarchical convolutional neural network (CNN) model for mixed gas concentration inversion is proposed. In our experiment, mixtures of SO2, NO2, and NH3 were analyzed. SO2 and NO2 were the detected gases, while NH3 was the interfering gas. For the simulation samples, the average absolute errors were 0.5 and 0.9 ppm for SO2 and NO2, respectively. For the experimental samples, the model performed well when the absorption intensities of components differed by no more than one order of magnitude. Compared with the single-module CNN model without a hierarchical structure, the results demonstrate that the hierarchical structure reduces cross-interference and improves the prediction accuracy to a great extent. We believe that our model will have a promising application in the field of gas detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amal, D. Shi, R. Ionescu, W. Zhang, Q. Hua, Y. Pan, L. Tao, H. Liu, and H. Haick, Int. J. Cancer., 136, No. 6, E614–E622 (2015).

    Article  Google Scholar 

  2. T. Xu, C. Tang, T. Yang, W. Zhu, and J. Liu, Int. J. Rock Mech. Min. Sci., 43, No. 6, 905–919 (2006).

    Article  Google Scholar 

  3. Y. Zhang, H. Guo, Z. Lu, L. Zhan, and P. Hung, Eng. Appl. Artif. Intell., 92, Article ID 103643 (2020).

  4. M. Schroter, A. Obermeier, D. Bruggemann, M. Plechschmidt, and O. Klemm, J. Air Waste Manage. Ass., 53, No. 6, 716–723 (2003).

    Article  Google Scholar 

  5. J. H. Yang, J. Jung, J. H. Ryu, and J. J. Yoh, Chemosphere, 257, Article ID 127237 (2020).

  6. M. Lassen, D. B. Harder, A. Brusch, O. S. Nielsen, D. Heikens, S. Persijn, and J. C. Petersen, Opt. Express, 25, No. 3, 1806–1814 (2017).

    Article  ADS  Google Scholar 

  7. J. Uotila, V. Koskinen, and J. Kauppinen, Vib. Spectrosc., 38, Nos. 1–2, 3–9 (2005).

    Article  Google Scholar 

  8. H. O. Edwards and J. P. Dakin, Sens. Actuator B Chem., 11, Nos. 1–3, 9–19 (1993).

    Article  Google Scholar 

  9. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. Dai, Science, 287, No. 5453, Article ID 622625 (2000).

  10. S. Herberger, M. Herold, H. Ulmer, A. Burdack-Freitag, and F. Mayer, Build. Environ., 45, No. 11, 2430–2439 (2010).

    Article  Google Scholar 

  11. V. Kampitakis, E. Gagaoudakis, D. Zappa, E. Comini, E. Aperathitis, A. Kostopoulos, G. Kiriakidis, and V. Binas, Mat. Sci. Sem. Proc., 115, Article ID 105149 (2020).

  12. P. Mahbub, A. Noori, J. S. Parry, J. Davis, A. Lucieer, and M. Macka, Talanta, 218, Article ID 121144 (2020).

  13. Z. Bielecki, T. Stacewicz, J. Smulko, and J. Wojtas, Appl. Sci. (Basel)., 10, No. 15, Article ID 5111 (2020).

  14. L. Shao, B. Fang, F. Zheng, X. Qiu, Q. He, J. Wei, C. Li, and W. Zhao, Spectrochim. Acta A, 222, Article ID 117118 (2019).

  15. L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, Opt. Express, 24, No. 6, A528–A535 (2016).

    Article  ADS  Google Scholar 

  16. J. Zhao and S. Xiao, Optik, 195, Article ID 163142 (2019).

  17. S. Khan, D. Newport, and S. Le Calvé, Sensors, 19, No. 23, Article ID 5210 (2019).

  18. L. Mei, P. Guan, and Z. Kong, Opt. Express, 25, No. 20, A953–A962 (2017).

    Article  ADS  Google Scholar 

  19. G. Hönninger, C. von Friedeburg, and U. Platt, Atm. Chem. Phys., 4, No. 36, 231–254 (2004).

    Article  ADS  Google Scholar 

  20. J. Mellqvist and A. Rosen, J. Quant. Spectrosc. Radiat. Transf., 56, No. 2, 209–224 (1996).

    Article  ADS  Google Scholar 

  21. S. Determann, J. M. Lobbes, R. Reuter, and J. Rullkotter, Mar. Chem., 62, Nos. 1–2, 137–156 (1998).

    Article  Google Scholar 

  22. Y. Matsumi, H. Shigemori, and K. Takahashi, Atm. Environ., 39, Nos. 17, 3177–3185 (2005).

    Article  Google Scholar 

  23. J. Yang, L. Du, Y. Cheng, S. Shi, C. Xiang, J. Sun, and B. Chen, Opt. Express, 28, No. 13, 18728–18741 (2020).

    Article  ADS  Google Scholar 

  24. C. L. Hammer, G. W. Small, R. J. Combs, R. B. Knapp, and R. T. Kroutil, Anal. Chem., 72, No. 7, 1680–1689 (2000).

    Article  Google Scholar 

  25. M. Caselli, L. Trizio, G. de Gennaro, and P. Ielpo, Water Air Soil Pollut., 201, Nos. 1–4, 365–377 (2009).

    Article  ADS  Google Scholar 

  26. A. A. Tomchenko, G. Harmer, B. Marquis, and J. Allen, Sens. Act. B: Chem., 93, Nos. 1–3, 126–134 (2003).

    Article  Google Scholar 

  27. L. Song, H. Wu, Y. Yang, Q. Guo, and J. Li, Appl. Opt., 59, No. 17, E9–E16 (2020).

    Article  ADS  Google Scholar 

  28. J. Wang, M. Shi, P. Zheng, Sh. Xue, and R. Peng, J. Appl. Spectrosc., 85, 190–196 (2018).

    Article  ADS  Google Scholar 

  29. S. Cui, J. Wang, L. Yang, J. Wu, and X. Wang, J. Pharm. Biomed. Anal., 102, 64–77 (2015).

    Article  Google Scholar 

  30. Y. Yu and Y. Qu, Optik, 217, Article ID 164915 (2020).

  31. L. Xiao, K. Tong, L. Song, L. Wang, P. Wu, W. Liu, and X. Zhao, Opt. Eng., 59, No. 12, Article ID 125101 (2020).

  32. X. Wang, Z. Li, D. Zheng, and W. Wang, J. Appl. Spectrosc., 87, 54–61 (2020).

    Article  ADS  Google Scholar 

  33. Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, J. Geosci. Remote, 54, No. 10, 6232–6251 (2016).

    Article  ADS  Google Scholar 

  34. L. Jing, M. Zhao, P. Li, and X. Xu, Measurement, 111, 1–10 (2017).

    Article  ADS  Google Scholar 

  35. W. Wang, Y. Yang, X. Wang, W. Wang, and J. Li, Opt. Eng., 58, No. 4, Article ID 040901 (2019).

  36. S. L. Manatt and A. L. Lane, J. Quant. Spectrosc. Radiat. Transf., 50, 267–276 (1993).

    Article  ADS  Google Scholar 

  37. W. Schneider, G. K. Moortgat, J. P. Burrows, and G. S. Tyndall, J. Photochem. Photobiol. A: Chem., 40, 195–217 (1987).

    Article  Google Scholar 

  38. B. M. Cheng, H. C. Lu, H. K. Chen, M. Bahou, Y. P. Lee, A. M. Mebel, L. C. Lee, M. C. Liang, and Y. L. Yung, Astrophys. J., 647, 1535–1542 (2006).

    Article  ADS  Google Scholar 

  39. J. Brion, A. Chakir, D. Daumont, J. Malicet, and C. Parisse, Chem. Phys. Lett., 213, 610–612 (1993).

    Article  ADS  Google Scholar 

  40. H. Grosch, A. Fateev, and S. Clausen, J. Quant. Spectrosc. Radiat. Transf., 154, 28–34 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lu.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, p. 591, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Bian, Y., Hu, X. et al. Mixed Gas Concentration Inversion Based on the Ultraviolet Absorption Spectrum by a Hierarchical Convolutional Neural Network. J Appl Spectrosc 89, 751–760 (2022). https://doi.org/10.1007/s10812-022-01421-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01421-6

Keywords

Navigation