Skip to main content
Log in

Classification Method of Coal and Gangue Using Terahertz Time-Domain Spectroscopy, Cluster Analysis and Principal Component Analysis

  • Published:
Journal of Applied Spectroscopy Aims and scope

The process of coal mining generates high amounts of coal gangue. Accordingly, coal–gangue separation is a key problem limiting coal production and quality. Terahertz time-domain spectroscopy was combined with multivariate statistical analyses to identify different kinds of coal and gangue. First, the terahertz spectrum and power spectrum of the sample were measured, and the refractive index and absorption coefficient of the sample were calculated from the terahertz time-domain spectrum of the sample. Significant differences in the power spectrum, refractive index, and absorption coefficient were found between different kinds of coal and gangue. After combining multivariate statistical methods — cluster analysis (CA) and principal component analysis (PCA) — a model based on THz parameters and different types of coal and gangue was established. During cluster analysis, the Euclidean distance of two types of samples and the score of the first principal component in the principal component analysis could reflect the similarity and dissimilarity between coal and gangue samples, and consistent results were obtained for CA and PCA. The experimental results showed that the combination of terahertz technology and multivariate statistical methods yielded an accurate approach to distinguishing between coal and gangue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Ge, Y. Y. Jiang, Z.H. Xu, F. Y. Lian, Y. Zhang, and S. H. Xia, Opt. Express, 22, 12533–12544 (2014).

    Article  ADS  Google Scholar 

  2. Y. F. Hua and H. J. Zhang, IEEE Trans. Microw. Theory, 58, 2064–2070 (2010).

    Article  Google Scholar 

  3. C. B. Reid, G. Reese, A. P. Gibson, and V. P. Wallace, IEEE J. Biomed. Health, 17, 774–778 (2013).

    Article  Google Scholar 

  4. Y. B. Ji, C. H. Park, H. Kim, S. H. Kim, G. M. Lee, S. K. Noh, T. I. Jeon, J. H. Son, Y. M. Huh, S. Haam, S. J. Oh, S. K. Lee, and J. S. Suh, Biomed. Opt. Express, 6, 1398–1406 (2015).

    Article  Google Scholar 

  5. A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, Trends Food Sci. Tech., 25, 40–46 (2012).

    Article  Google Scholar 

  6. H. L. Zhan, J. F. Xi, K. Zhao, R. M. Bao, and L. Z. Xiao, Food Control, 67, 114–118 (2016).

    Article  Google Scholar 

  7. S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, Opt. Express, 17, 19006–19014 (2009).

    Article  ADS  Google Scholar 

  8. J. Neu and C. A. Schmuttenmaer, J. Appl. Phys., 124, Article ID 231101 (2018).

  9. H. L. Zhan, K. Zhao, and L. Z. Xiao, Energy, 93, 1140–1145 (2015).

    Article  Google Scholar 

  10. M. Mumtaz, M. A. Mahmood, A. Shahzad, S. D. Khan, M. A. Zia, M. Ahmed, and I. Ahmad, J. Infrared, Millim. Te., 41, 1181–1188 (2020).

  11. D. Wang, Y. Zhang, J. Han, X. Li, X. F. Chen, T. Z. Qiu, and H. Chen, Sci. Rep., 11, Article ID 13209 (2021).

  12. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, J. Opt. Soc. Am. A, 18, 1562–1571 (2001).

    Article  ADS  Google Scholar 

  13. F. Wang, S. Guo, J. F. Zhao, H. Y. Xia, R. M. Bao, H. L. Zhan, and J. N. Wang, Spectrosc. Spectr. Anal., 38, 3638–3644 (2018).

    Google Scholar 

  14. H. L. Zhan, S. X. Wu, R. M. Bao, L. N. Ge, and K. Zhao, Fuel, 143, 189–193 (2015).

    Article  Google Scholar 

  15. H. Park and J. H. Son, Sensors, 21, Article ID 1186 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Miao.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 555–561, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, D., Miao, S., Fan, Q. et al. Classification Method of Coal and Gangue Using Terahertz Time-Domain Spectroscopy, Cluster Analysis and Principal Component Analysis. J Appl Spectrosc 89, 719–725 (2022). https://doi.org/10.1007/s10812-022-01416-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01416-3

Keywords

Navigation