Skip to main content

Advertisement

Log in

Quantitative Analysis of Nitrogen in Compound Fertilizers Using Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Regression

  • Published:
Journal of Applied Spectroscopy Aims and scope

Quantitative analyses of the nitrogen concentration in compound fertilizer were performed using laser-induced breakdown spectroscopy (LIBS). Thirty-two samples were used as a calibration set, and eight samples were used as a validation set. To eliminate the matrix effect, partial least-squares regression (PLSR) and least-squares support vector regression (LS-SVR) were used to establish models. For the partial least-squares regression model, the correlation coefficients for the calibration and prediction sets were 0.837 and 0.794, respectively. While using the LS-SVR method, the correlation coefficients for the calibration and prediction sets were improved to 0.994 and 0.993, respectively. Therefore, the LS-SVR method improved the analysis accuracy. The prediction mean absolute error was 0.023%. The results indicate that LIBS coupled with LS-SVR is a reliable and accurate method for determining the nitrogen concentration in compound fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Cui, Mod. Agric. Sci. Technol., 5, 231–232 (2016).

    Google Scholar 

  2. Z. M. Xiao and H. J. Liang, Chem. Fertil. Ind., 42, 12–15 (2015).

    Google Scholar 

  3. C. C. Yuan and G. L. Lv, Chem. Fertil. Ind., 45, 17–18, 70 (2018).

    Google Scholar 

  4. M. R. Wang, Y. M. Yuan, and N. L. Tao, Mod. Agric. Sci. Technol., 7, 20–21 (2012).

    Google Scholar 

  5. Y. Q. Cai, J. Wang, Z. Q. Wang, F. M. Meng, and J. X. Liu, Phosphate Compound Fertil., 32, 18–19, 46 (2017).

    Google Scholar 

  6. A. C. David and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Cambridge University Press, Cambridge (2006).

    Google Scholar 

  7. D. C. Zhang, Z. Q. Hu, Y. B. Su, B. Hai, X. L. Zhu, and X. X. Ma, Opt. Express, 26, 18794–18802 (2018).

    Article  ADS  Google Scholar 

  8. P. Y. Gao, P. Yang, R. Zhou, S. X. Ma, W. Zhang, Z. Q. Hao, X. Y. Li, and X. Y. Zeng, Appl. Opt., 57, 8942–8946 (2018).

    Article  ADS  Google Scholar 

  9. C. H. Yan, J. Qi, J. Liang, T. L. Zhang, and H. Li, J. Anal. At. Spectrom., 33, 2089–2097 (2018).

    Article  Google Scholar 

  10. H. Jull, R. Kunnemeyer, and P. Schaare, Precis. Agric., 19, 823–839 (2018).

    Article  Google Scholar 

  11. X. Y. He, B. Q. Chen, Y. Q. Chen, R. H. Li, and F. J. Wang, J. Anal. At. Spectrom., 33, 2203–2209 (2018).

    Article  Google Scholar 

  12. D. Anglos and V. Detalle, In: Laser-Induced Breakdown Spectroscopy, Springer (2014), pp. 531–554.

  13. W. A. Farooq, F. N. Al-Mutairi, A. E. M. Khater, A. S. Al-Dwayyan, M. S. AlSalhi, and M. Atif, Opt. Spectrosc., 112, 874–880 (2012).

    Article  ADS  Google Scholar 

  14. D. F. Andrade, M. A. Sperança, and E. R. Pereira Filho, Anal. Methods, 9, 5156–5164 (2017).

    Article  Google Scholar 

  15. S. C. Yao, J. D. Lu, J. Y Li, K. Chen, J. Li, and M. R Dong, J. Anal. At. Spectrom., 25, 1733–1738 (2010).

  16. B. S. Marangoni, K. S. G. Silva, G. Nicolodelli, G. S. Senesi, J. S. Cabral, P. R. Villas-Boas, C. S. Silva, P. C. Teixeira, A. R. A. Nogueira, V. M. Benites, and D. M. B. P. Milori, Anal. Methods, 8, 78–82 (2016).

    Article  Google Scholar 

  17. G. Nicolodelli, G. S. Senesi, I. L.O. Perazzoli, B. S. Marangoni, V. M. Benites, and D. M. B. P. Milori, Sci. Total Environ., 565, 1116–1123 (2016).

    Article  ADS  Google Scholar 

  18. B. H. Zhang, W. Sha, Y. C. Jiang, and Z. F. Cui, Appl. Opt., 58, 3277–3281 (2019).

    Article  ADS  Google Scholar 

  19. N. F. Yang, N. S. Eash, J. Lee, M. Z. Martin, Y. S. Zhang, F. R. Walker, and J. E. Yang, Soil Sci., 175, 447–452 (2010).

    Article  ADS  Google Scholar 

  20. Y. He, X. Liu, Y. Lv, F. Liu, J. Peng, T. Shen, Y. Zhao, Y. Tang, and S. Luo, Sensors, 18, Article ID 1526 (2018).

  21. X. Liu, F. Liu, W. Huang, J. Peng, T. Shen, and Y. He, Molecules, 23, Article ID 2492 (2018).

  22. Q. Shi, G. H. Niu, Q. Y. Lin, T. Xu, F. J. Li, and Y. X. Duan, J. Anal. At. Spectrom., 30, 2384–2393 (2015).

    Article  Google Scholar 

  23. W. Sha, J. T. Li, W. B. Xiao, P. P. Ling, and C. P. Lu, Sensors, 19, Article ID 3277 (2019).

  24. C. G. Ricardo, M. O. Adudelo, K. Tiels, and J. A. K. Suykens, Europ. Control Conf. (ECC) (2016).

  25. J. B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, Anal. Chem., 78, No. 5, 1462–1469 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Shi.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 541–547, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Shi, C., Dai, H. et al. Quantitative Analysis of Nitrogen in Compound Fertilizers Using Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Regression. J Appl Spectrosc 89, 705–711 (2022). https://doi.org/10.1007/s10812-022-01414-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01414-5

Keywords

Navigation