Skip to main content
Log in

Effect of Nitrogen Doping on the Structural and Optical Properties of Zn2GeO4 Phosphors

  • Published:
Journal of Applied Spectroscopy Aims and scope

Nitrogen-doped Zn2GeO4 (ZGO:N) phosphors were synthesized using a chemical hydrothermal approach. The influence of nitrogen doping on the structural and optical properties of ZGO phosphors was investigated. Results indicated that N ions substituted for O ions successfully and N doping expanded throughout the unit cell of the crystal host lattice. We observed a slight blue-shift in bandgap energy, which signified the weak quantum confinement of the prepared ZGO nanoparticles. At a 260-nm excitation wavelength, compared with the photoluminescence (PL) spectrum of the ZGO phosphors, the peak position of emission of the N-doped ZGO phosphors blue shifted. In the vibrational modes of ZGO owing to N incorporation, H substituted at the O site, subsequently causing passivation in ZGO:N nanoparticles. The concentration of N ions in ZGO:N played important roles in the evolution of PL intensity and quality of nanocrystals. This result contributed to the optimization of nitrogen-doped phosphors with 5 mol% content. The possible luminescence mechanism of ZGO:N phosphors was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Bo, S. Shu-yan, S. U. N. Xiu-juan, P. Jing, W. Bo, and X. Yan, Chem. Res. Chin., 28, 764–767 (2012).

    Google Scholar 

  2. Z. Liu and X. Jing L. Wang, J. Electrochem. Soc., 154, H500 (2007).

    Article  Google Scholar 

  3. Y. Li, K. Ding, B. Cheng, Y. Zhang, and Y. Lu, Phys. Chem. Chem. Phys., 17, 5613–5623 (2015).

    Article  Google Scholar 

  4. N. M. C. H. P. Lan, C. X. Thang, V.-H. Pham, P. T. Kien, V. T. N. Minh, and T. T. H. Tam, Optik (Stuttg.), 199, Article ID 163310 (2019).

  5. J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, and H. Nishiyama, J. Phys. Chem. B, 108, 4369–4375 (2004).

  6. S. Takeshita, J. Honda, T. Isobe, T. Sawayama, and S. Niikura, Cryst. Growth Des., 10, 4494–4500 (2010).

  7. Z. Gu, F. Liu, X. Li, and Z. W. Pan, Phys. Chem. Chem. Phys., 15, 7488–7493 (2013).

    Article  Google Scholar 

  8. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, J. Am. Chem. Soc., 132, 14385–14387 (2010).

    Article  Google Scholar 

  9. M. Shang, G. Li, D. Yang, X. Kang, C. Peng, and J. Lin, Dalton Trans., 41, 8861–8868 (2012).

    Article  Google Scholar 

  10. Y. Li, A. Zhao, C. Chen, C. Zhang, J. Zhang, and G. Jia, Dyes Pig., 150, 267–274 (2018).

    Article  Google Scholar 

  11. Q. Bai, P. Li, Z. Wang, S. Xu, T. Li, Z. Yang, and Z. Xu, Spectrochim. Acta A: Mol. Biomol. Spectr., 199, 179–188 (2018).

    Article  ADS  Google Scholar 

  12. Q. Bai, Z. Wang, P. Li, S. Xu, T. Li, and Z. Yang, RSC Adv., 6, 102183–102192 (2016).

    Article  ADS  Google Scholar 

  13. G. Gao and L. Wondraczek, J. Mater. Chem. C, 1, 1952–1958 (2013).

    Article  Google Scholar 

  14. R. Kumari, A. Sahai, and N. Goswami, Progress Nat. Sci. Mater. Int., 25, 300–309 (2015).

    Article  Google Scholar 

  15. M. Cohen, Elements of Diffraction, Addison-Wesley Co. Inc., pp. 459–460 (1956).

  16. N. Goswami and D. K. Sharma, Physica E, 42, 1675–1682 (2010).

    Article  ADS  Google Scholar 

  17. O. Yamaguchi, J. Hidaka, and K. Hirota, J. Mater. Sci. Lett., 10, 1471 (1991).

    Article  Google Scholar 

  18. S. Limpijumnong, X. Li, S. H. Wei, and S. Zhang, Physica B, 376, 686–689 (2006).

    Article  ADS  Google Scholar 

  19. Z. J. Gu, F. Liu, X. F. Li, and Z. W. Pan, Phys. Chem. Chem. Phys., 15, 7488 (2013).

    Article  Google Scholar 

  20. G. J. Gao and L. Wondraczek, J. Mater. Chem. C Mater. Opt. Electron. Dev., 1, 1952 (2013).

  21. J. I. Pankove, Optical Processes in Semiconductors, New York, Courier Corporation (2012).

    Google Scholar 

  22. A. Boonchun and W. R. Lambrecht, Phys. Status Solidi b, 250, 2091–2101 (2013).

    Article  ADS  Google Scholar 

  23. S. Lautenschlaeger, M. Hofmann, S. Eisermann, G. Haas, M. Pinnisch, A. Laufer, and B. Meyer, Phys. Status Solidi b, 248, 1217–1221 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. C. H. P. Lan or C. X. Thang.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 485–490, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, N.M.C.H.P., Tuan, D.V., Tuan, T.Q. et al. Effect of Nitrogen Doping on the Structural and Optical Properties of Zn2GeO4 Phosphors. J Appl Spectrosc 89, 652–657 (2022). https://doi.org/10.1007/s10812-022-01406-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01406-5

Keywords

Navigation