Skip to main content
Log in

Frequency Conversion of Slab Radio-Frequency Discharge CO and CO2 Lasers Into the Spectral Range ~2–20 μm (Review)

  • Published:
Journal of Applied Spectroscopy Aims and scope

Research that both initiated and developed a hybrid IR-laser system based on conversion of Q-switched slab radiofrequency discharge CO and CO2 lasers in various nonlinear crystals is reviewed. The developed broadband laser system operates in the spectral range from ~2 to ~20 μm because of generation of emission at difference and sum frequencies in these crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Picque and T. W. Hansch, Nat. Photonics, 13, No. 3, 146–157 (2019).

    Article  ADS  Google Scholar 

  2. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications, Springer Netherlands, Dordrecht (2008).

    Book  Google Scholar 

  3. V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, J. Opt. Technol., 77, No. 1, 6–17 (2010).

    Article  Google Scholar 

  4. V. Kompanets, S. Shelygina, E. Tolordava, S. Kudryashov, I. Saraeva, A. Rupasov, O. Baitsaeva, R. Khmelnitskii, A. Ionin, Y. Yushina, S. Chekalin, and M. Kovalev, Biomed. Opt. Express, 12, No. 10, 6317–6325 (2021).

    Article  Google Scholar 

  5. K. Ohtani, M. Beck, and J. Faist, Appl. Phys. Lett., 105, No. 12, Article ID 121115 (2014).

  6. A. A. Ionin, in: Gas Lasers, M. Endo and R. F. Walter (Eds.), CRC Press, Boca Raton (2007), pp. 201–237.

    Google Scholar 

  7. A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, Opt. Lett., 42, No. 3, 498–501 (2017).

    Article  ADS  Google Scholar 

  8. A. A. Ionin, A. K. Kurnosov, A. P. Napartovich, and L. V. Seleznev, Laser Phys., 20, 144–186 (2010).

    Article  ADS  Google Scholar 

  9. A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, A. A. Kotkov, A. K. Kurnosov, A. P. Napartovich, O. A. Rulev, L. V. Seleznev, D. V. Sinitsyn, G. D. Hager, and S. L. Shnyrev, Quantum Electron., 36, No. 12, 1153–1154 (2006).

    Article  ADS  Google Scholar 

  10. S. Ya. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, J. Opt. Soc. Am. B, 24, No. 9, 2509–2516 (2007).

    Article  ADS  Google Scholar 

  11. A. A. Ionin, I. O. Kinyaevskiy, A. M. Sagitova, and Y. M. Andreev, Appl. Opt., 58, No. 10, 2485–2489 (2019).

    Article  ADS  Google Scholar 

  12. A. A. Ionin, I. O. Kinyaevskiy, and A. M. Sagitova, in: Proc. 2020 Int. Conf. Laser Optics (ICLO), November 2–6, 2020, St. Petersburg, Russia, IEEE (2020), p. 290.

  13. G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, and V. V. Smirnov, Pis’ma Zh. Tekh. Fiz., 16, No. 3, 130–133 (1972).

    Google Scholar 

  14. H. Kildal and J. C. Mikkelsen, Opt. Commun., 9, No. 3, 315–318 (1973).

    Article  ADS  Google Scholar 

  15. Y. M. Andreev, T. V. Vedernikova, A. A. Betin, V. G. Voevodin, A. I. Gribenyukov, O. Y. Zyryanov, I. I. Ippolitov, V. I. Masychev, O. V. Mitropol′skii, V. P. Novikov, M. A. Novikov, and A. V. Sosnin, Sov. J. Quantum Electron., 15, No. 7, 1014–1015 (1985).

    Article  ADS  Google Scholar 

  16. Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, and V. P. Novikov, Sov. J. Quantum Electron., 17, No. 6, 748–749 (1987).

    Article  ADS  Google Scholar 

  17. I. V. Dubrovina, V. N. Ochkin, and N. N. Sobolev, Sov. J. Quantum Electron., 4, No. 8, 1028–1029 (1975).

    Article  ADS  Google Scholar 

  18. Y. M. Andreev, A. D. Belykh, V. G. Voevodin, P. P. Geiko, A. I. Gribenyukov, V. A. Gurashvili, and S. V. Izyumov, Sov. J. Quantum Electron., 17, No. 4, 490–491 (1987).

    Article  ADS  Google Scholar 

  19. Yu. M. Andreev, S. N. Govdei, P. P. Geiko, A. I. Gribenyukov, V. A. Gurashvili, V. V. Zuev, and S. V. Izyumov, Opt. Atmos. Okeana, 1, No. 4, 124–126 (1988).

    Google Scholar 

  20. H. Kildal and J. C. Mikkelsen, Opt. Commun., 10, No. 4, 306–309 (1974).

    Article  ADS  Google Scholar 

  21. M. S. Piltch, J. P. Rink, and C. R. Tallman, Opt. Commun., 15, No. 1, 112–114 (1975).

    Article  ADS  Google Scholar 

  22. J. W. Kelly, in: A Review of Laser Isotope Separation of Uranium Hexafluoride, J. W. Kelly (Ed.), Australian Atomic Energy Commission, Research Establishment, Lucas Heights, N.S.W. (1983).

  23. A. A. Ionin, I. O. Kinyaevskii, Yu. M. Klimachev, A. Yu. Kozlov, and A. A. Kotkov, Yad. Fiz. Inzh., 7, No. 5, 383–390 (2016).

    Google Scholar 

  24. A. A. Ionin, I. O. Kinyaevskii, Yu. M. Klimachev, and A. A. Kotkov, Opt. Spektrosk., 119, No. 3, 381–387 (2015).

    Article  Google Scholar 

  25. Yu. M. Andreev, A. A. Ionin, I. O. Kinyaevskii, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, G. V. Lanskii, and A. V. Shaiduko, Kvantovaya Elektron. (Moscow), 43, No. 2, 139–143 (2013).

    Article  Google Scholar 

  26. Y. M. Andreev, O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, Opt. Lett., 40, 2997 (2015).

    Article  ADS  Google Scholar 

  27. O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, and A. Y. Kozlov, Opt. Commun., 363, 26–30 (2016).

    Article  ADS  Google Scholar 

  28. J. M. Manley and H. E. Rowe, Proc. IRE, 44, No. 7, 904–913 (1956).

    Article  Google Scholar 

  29. A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, A. Yu. Kozlov, O. A. Rulev, A. M. Sagitova, L. V. Seleznev, and D. V. Sinitsyn, Appl. Phys. B: Lasers Opt., 124, No. 9, 173 (2018).

    Article  ADS  Google Scholar 

  30. A. A. Ionin, I. O. Kinyaevskiy, Y. M. Klimachev, Y. V. Kochetkov, A. Y. Kozlov, L. V. Seleznev, D. V. Sinitsyn, D. S. Zemtsov, and Y. M. Andreev, Laser Phys., 28, No. 2, Article ID 025401 (2018).

  31. S. Avanesov, V. Badikov, A. Tyazhev, D. Badikov, V. Panyutin, G. Marchev, G. Shevyrdyaeva, K. Mitin, F. Noack, P. Vinogradova, N. Schebetova, V. Petrov, and A. Kwasniewski, Opt. Mater. Express, 1, No. 7, 1286–1291 (2011).

    Article  ADS  Google Scholar 

  32. V. V. Badikov, D. V. Badikov, V. B. Laptev, K. V. Mitin, G. S. Shevyrdyaeva, N. I. Shchebetova, and V. Petrov, Opt. Mater. Express, 6, No. 9, 2933–2938 (2016).

    Article  ADS  Google Scholar 

  33. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer, New York (2005).

    Google Scholar 

  34. A. V. Shcherbakova, D. R. Anfimov, I. L. Fufurin, I. S. Golyak, I. A. Trapeznikova, E. R. Kareva, and A. N. Morozov, Opt. Spektrosk., 129, No. 6, 747–754 (2021).

    Google Scholar 

  35. A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, A. M. Sagitova, and Yu. M. Andreev, Infrared Phys. Technol., 100, 62–66 (2019).

    Article  ADS  Google Scholar 

  36. A. A. Ionin, D. V. Badikov, V. V. Badikov, I. O. Kinyaevskiy, Y. M. Klimachev, A. A. Kotkov, A. Y. Kozlov, A. M. Sagitova, and D. V. Sinitsyn, Opt. Lett., 43, No. 18, 4358–4361 (2018).

    Article  ADS  Google Scholar 

  37. A. M. Sagitova, A. A. Ionin, I. O. Kinyaevskii, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, and D. V. Sinitsyn, in: Proceedings of the International Conference “Lasers in Science, Technology, Medicine” [in Russian], October 28–30, 2020, Moscow, MNTORES im. A. S. Popova (2020), pp. 49–53.

  38. A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, A. A. Kotkov, A. Yu. Kozlov, A. M. Sagitova, D. V. Sinitsyn, and O. A. Rulev, Opt. Laser Technol., 148, Article ID 107777 (2022).

  39. A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, A. A. Kotkov, A. Yu. Kozlov, A. M. Sagitova, D. V. Sinitsyn, V. V. Badikov, and D. V. Badikov, Opt. Laser Technol., 115, 205–209 (2019).

    Article  ADS  Google Scholar 

  40. V. O. Petukhov, V. A. Gorobets, S. Y. Tochitsky, and K. V. Kozlov, in: Proc. SPIE 4351, Laser Optics 2000: High-Power Gas Lasers, June 26–30, 2000, St. Petersburg, Russia, SPIE (2001); https://doi.org/10.1117/12.417705.

  41. A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, A. A. Kotkov, A. Yu. Kozlov, D. V. Sinitsyn, and A. M. Sagitova, Proc. 2018 Int. Conf. Laser Optics (ICLO 2018), June 4–8, 2018, St. Petersburg, Russia, IEEE (2018), p. 100.

  42. A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, A. A. Kotkov, A. Yu. Kozlov, A. M. Sagitova, D. V. Sinitsyn, O. A. Rulev, V. V. Badikov, and D. V. Badikov, Opt. Express, 27, No. 17, 24353–24361 (2019).

    Article  ADS  Google Scholar 

  43. A. Ionin, I. Kinyaevskiy, Y. Klimachev, A. Kotkov, A. Kozlov, A. Sagitova, L. Seleznev, and D. Sinitsyn, Proc. SPIE 11162, High Power Lasers: Technology and Systems, Platforms, Effects III, September 9–12, 2019, Strasbourg, France, SPIE (2019), 11620D.

  44. C. Shi, M. Ermold, G. Oulundsen, and L. Newman, Proc. SPIE 10911, High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VIII, February 2–7, 2019, San Francisco, California, United States, SPIE (2019), 109110M.

  45. A. Held, Laser Tech. J., 13, No. 3, 15–17 (2016).

    Article  Google Scholar 

  46. P. Rosenthal, D. Muller, and G. Oulundsen, CO Lasers Benefit via Drilling and Wafer Debonding, Laser Focus World (2019), https://www.laserfocusworld.com/industrial-laser-solutions/article/14221544/co-lasersbenefit-via-drillingand-wafer-debonding.

  47. T. Oriekhov, C. M. Harvey, K. Muhlberger, and M. Fokine, J. Opt. Soc. Am. B, 38, No. 12, F130–F137 (2021).

    Article  Google Scholar 

  48. C. M. Harvey, K. Muhlberger, T. Oriekhov, P. Maniewski, and M. Fokine, J. Opt. Soc. Am. B, 38, No. 12, F122–F129 (2021).

    Article  Google Scholar 

  49. Diamond Cx-10LQS Q-Switched CO2 Lasers. Coherent, Inc. (2021), https://www.coherent.com/content/dam/coherent/site/en/resources/datasheet/lasers/COHR_DiamondCx-10LQS_DS_0118_3.pdf.

  50. Slab CO2 lasers (catalog), ZAO RLS (Russian Laser Systems) (2021), http://www.slab-laser.ru/catalog/katalog_CO2-lasers.pdf.

  51. Waveguide CO2 lasers. Special technologies (2021), http://www.специальные-технологии.рф/CO2-lasers.html.

  52. Waveguide (CO2) lasers, JSC Plasma (2021), https://www.plasmalabs.ru/category/index/id/13.

  53. V. V. Badikov, Nonlinear-optical and laser crystals for fabrication of quantum electronics devices. Certifi cates of readiness (2012), http://55.vixpo.nsu.ru/?int=VIEW&el=560&templ=WINDOW_VIEW.

  54. ZnGeP2 optical elements, OOO Laboratory of Optical Crystals (2022), http://loc-ltd.com/zngep2/.

  55. A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, O. A. Romanovskii, O. V. Kharchenko, and S. V. Yakovlev, J. Appl. Spectrosc., 81, No. 2, 309–312 (2014).

    Article  ADS  Google Scholar 

  56. M. A. Van Zeeland, R. L. Boivin, D. L. Brower, T. N. Carlstrom, J. A. Chavez, W. X. Ding, R. Feder, D. Johnson, L. Lin, R. C. O’Neill, and C. Watts, Rev. Sci. Instrum., 84, No. 4, Article ID 043501 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sagitova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, pp. 443–454, July–August, 2022. https://doi.org/10.47612/0514-7506-2022-89-4-443-454.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionin, A.A., Kinyaevsky, I.O., Klimachev, Y.M. et al. Frequency Conversion of Slab Radio-Frequency Discharge CO and CO2 Lasers Into the Spectral Range ~2–20 μm (Review). J Appl Spectrosc 89, 613–623 (2022). https://doi.org/10.1007/s10812-022-01401-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01401-w

Keywords

Navigation