Skip to main content
Log in

Application of Non-Negative Sparse Matrix Transformation in Hyperspectral Analysis

  • Published:
Journal of Applied Spectroscopy Aims and scope

A variety of pictures in hyperspectral fields requires a reduction in dimensionality, which often needs unique algorithms such as principal component analysis and minimum noise fraction (MNF). This article investigates the improved method of non-negative sparse matrix transformation based on the maximum likelihood covariance estimation and the Frobenius norm to better achieve dimensionality reduction. Non-negativity is presented based on the sparse matrix, which reduces the calculation time and improves efficiency. In order to verify the non-negative sparse matrix transforms (n-SMT) algorithm, samples eroded by disease were selected in the experiment and classified to identify the different parts of leaves after dimension reduction. Besides the n-SMT method, the MNF algorithm is also applied to all the samples. This article compares the two algorithms’ operating time and verifies the accuracy of classification after the n-SMT algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Jia, B. C. Kuo, and M. M. Crawford, Proc. IEEE, 101, No. 3, 676–697 (2013).

    Article  Google Scholar 

  2. D. Landgrebe, IEEE Signal Proc. Magazine, 19, No. 1, 17–28 (2002).

    Article  ADS  Google Scholar 

  3. W. Jing and C. I. Chang, IEEE Trans. Geosci. Remote, 44, No. 6, 1586–1600 (2006).

    Article  ADS  Google Scholar 

  4. M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. Tilton, Proc. IEEE, 101, No. 3, 652–675 (2013).

    Article  Google Scholar 

  5. C. A. Manogue and T. Dray, Mod. Phys. Lett. A, 14, No. 2, 99–103 (2013).

    Article  ADS  Google Scholar 

  6. D. Zhang and Y. Le Y, Int. Conf. Comput. Intelligence & Industrial Application (2010).

  7. L. R. Bachega and C. A. Bouman, Int. Conf. Image Proc. IEEE (2010).

  8. A. L. Bertozzi and A. Flenner, Multiscale Model Sim., 10, No. 3, 1090–1118 (2012).

    Article  Google Scholar 

  9. J. Theiler, G. Cao, et al., IEEE J. Sel. Top. Signal Process, 5, No. 3, 424–437 (2011).

    Article  ADS  Google Scholar 

  10. G. Cao, L. Bachega, et al., IEEE Trans. Image Process, 20, No. 3, 625–640 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Kochan, G. Y. Tütüncü, and G. Giner, Expert Syst. Appl., 167, No. 3, Article ID 114200 (2020).

  12. J. Fan and L. Yuan, An. Stat., 39, No. 6, 3320–3356 (2011).

    Google Scholar 

  13. D. D. Lee, H. S. Seung, et al., Nature, 401, 788–791 (1999).

    Article  ADS  Google Scholar 

  14. P. O. Hoyer, J. Mach. Learn Res., 5, No. 9, 1457–1469 (2004).

    Google Scholar 

  15. A. Copar, M. Zitnik, and B. Zupan, Biodata Min., 10, No. 1, 41 (2017).

    Article  Google Scholar 

  16. Y. L. Xie, P. K. Hopke, and P. Paatero, J. Chem., 12, No. 6, 357–364 (2015).

    Article  Google Scholar 

  17. H. Zhi, X. Yu, G. Wang, and Z. Wang, Fifth Int. Conf. Fuzzy System and Knowledge Discovery, FSKD 2008, IEEE, Vol. 4, pp. 29–33, Jinan, Shandong, China (2008)

  18. D. Bo, M. M. Lin, and M. T. Chu, Numer. Algorithms, 65, No. 2, 251–274 (2014).

    Article  MathSciNet  Google Scholar 

  19. Y. Chen, A. Wiesel, and A. O. I. Hero, IEEE Trans. Signal Process, 59, No. 9, 4097–4107 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Pal and G. Foody, IEEE Trans. Geosci. Remote, 48, No. 5, 2297–2307 (2010).

    Article  ADS  Google Scholar 

  21. Z. Emre, E. Tülin, and M. E. Karslgil, 13th European Signal Processing Conf. IEEE (2015).

  22. Y. Bazi and F. Melgani, IEEE Trans. Geosci. Remote, 44, No. 11, 3374–3385 (2003).

    Article  ADS  Google Scholar 

  23. K. Hajian-Tilaki, Caspian J. Int. Med., 4, No. 2, 627–635 (2013).

    Google Scholar 

  24. S. D. Walter, State Med., 24, No. 13, 2025–2040 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fu.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, p. 436, May–June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Fu, Y., Zhao, S. et al. Application of Non-Negative Sparse Matrix Transformation in Hyperspectral Analysis. J Appl Spectrosc 89, 593–601 (2022). https://doi.org/10.1007/s10812-022-01399-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01399-1

Keywords

Navigation