Skip to main content
Log in

Ultrasound-Assisted Dispersive Microsolid-Phase Extraction for Preconcentration of Trace Cobalt and Nickel in Environmental Samples Prior to their Determination by Flame Atomic Absorption Spectrometry

  • Published:
Journal of Applied Spectroscopy Aims and scope

A new, green, simple, and validated ultrasound-assisted dispersive microsolid-phase extraction method applying unprecedented adsorbent-modified multiwalled carbon nanotubes was achieved for preconcentration and separation of trace cobalt (Co(II)) and nickel (Ni(II)) ions in diverse ecological samples before determination by flame atomic absorption spectrometry. The suggested approach uses a novel chelating agent named 3-(2,4-dihydroxyphen-1-ylazo)-1,2,4-triazole, which is chelated with Co(II) or Ni(II) ions as efficient and selective sorbent at pH 8.0. The impact of many parameters has been studied and optimized. Under ideal conditions, the calibration curves were linear within 1.0–200 and 2.0–300 μg/L ranges, with limits of detection equaling 0.30 and 0.60 μg/L for Co(II) and Ni(II) ions, respectively. The preconcentration factor attained 200, while the highest sorption capacities of Co(II) and Ni(II) are around 300 and 380 mg/g, respectively. The relative standard deviation (%RSD) regarding repeatability for Co(II) and Ni(II) upon calculation was 1.30 and 1.70% for intraday, and 1.750 and 1.95% for interday. To ensure the correctness of the suggested preconcentration approach, certified reference materials (SRM 1570A spinach leaves and TMDA-52.3 enriched water) were employed. The proposed approach was applied to determine the concentration of Co(II) and Ni(II) ions in a range of genuine water, juice, and food samples, and the findings were excellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATSDR, Toxicological Profile for Cobalt, U. S. Department of Health and Human Services, Atlanta (2001).

  2. A. A. Gouda, R. El Sheikh, A. M. Khedr, S. Abo Al Ezz, W. Gamil, M. M. El-Gabry, and E. H. Youssef, Int. J. Environ. Anal. Chem. (2021), https://doi.org/10.1080/03067319.2021.1928106.

  3. S. Dahiya, R. Karpe, A. G. Hegde, and R. M. Sharma, J. Food Compos. Anal., 18, 517–522 (2005).

    Article  Google Scholar 

  4. Y. Şahan, F. Basoglu, and S. Gücer, Food. Chem., 105, 395–399 (2007).

    Article  Google Scholar 

  5. W. J. Barreto, S. R. G. Barreto, I. S. Scarminio, D. N. Ishikawa, M. F. Soares, and M. V. B. de Proença, Quim. Nova, 33, 109–113 (2010).

    Article  Google Scholar 

  6. N. Baghban, A. M. H. Shabani, S. Dadfarnia, and A. A. Jafari, J. Braz. Chem. Soc., 20, 832–838 (2009).

    Article  Google Scholar 

  7. J. E. O'Sullivan, R. J. Watson, and E. C. V. Butler, Talanta, 115, 999–1010 (2013).

    Article  Google Scholar 

  8. F. Nekouei and S. Nekouei, Indian J. Sci. Res., 8, 138–145 (2014).

    Google Scholar 

  9. M. A. Akl and S. A. Ahmad, Egypt. J. Chem., 62, 1917–1931 (2019).

    Google Scholar 

  10. M. Sadia, M. R. Jan, J. Shah, and G. M. Greenway, Int. J. Environ. Anal. Chem., 93, 1537–1556 (2013).

    Article  Google Scholar 

  11. B. Feist and B. Mikula, Food Chem., 147, 302–306 (2014).

    Article  Google Scholar 

  12. S. V. Smirnova, D. V. Ilin, and I. V. Pletnev, Talanta, 221, Article ID 121485 (2021).

  13. Z. A. Alothman, Y. E. Unsal M. Habila, M. Tuzen, and M. Soylak, Desalin. Water Treat., 53, 3457–3465 (2015).

    Article  Google Scholar 

  14. M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, J. Hazard Mater., 150, 533–540 (2008).

    Article  Google Scholar 

  15. D. Citak, M. Tuzen, and M. Soylak, Food Chem. Toxic., 47, 2302–2307 (2009).

    Article  Google Scholar 

  16. S. Saracoglu, M. Soylak, D. Çabuk, Z. Topalak, and Y. Karagozlu, J. AOAC Int., 95, 892–896 (2012).

    Article  Google Scholar 

  17. L. S. Moreira, Í. P. Sá, R. C. Machado, A. R. A. Nogueira, E. G. P. da Silva, and C. D. B. Amaral, Spectrochim. Acta B, At. Spectrosc., 169, Article ID 105899 (2020).

  18. M. Soylak, A. Aydin, and N. Kizil, J. AOAC Int., 99, 273–278 (2016).

    Article  Google Scholar 

  19. E. Yildiz, Ş. Saçmaci, Ş. Kartal, and M. Saçmaci, Food Chem., 194, 143–148 (2016).

    Article  Google Scholar 

  20. H. Serencam, C. Duran, D. Ozdes, and H. Bektas, Acta Chim. Slov., 60, 287–293 (2013).

    Google Scholar 

  21. M. Soylak and A. Aydin, Food Chem. Toxic., 49, 1242–1248 (2011).

    Article  Google Scholar 

  22. Z. A. Alothman, E. Yilmaz, M. Habila, and M. Soylak, Turk. J. Chem., 39, 1038–1049 (2015).

    Article  Google Scholar 

  23. G. Alpdoğan, Toxicol. Environ. Chem., 98, 179–188 (2016).

    Article  Google Scholar 

  24. B. Topuz, Biol. Trace Elem. Res., 194, 295–302 (2020).

    Article  Google Scholar 

  25. M. A. Habila, Z. A. Alothman, E. Yilmaz, and M. Soylak, Int. J. Environ. Anal. Chem., 98, 171–181 (2018).

    Article  Google Scholar 

  26. A. Duran, M. Tuzen, and M. Soylak, J. Hazard. Mater., 169, 466–471 (2009).

    Article  Google Scholar 

  27. L. Meng, C. Chen, and Y. Yang, Anal. Lett., 48, 453–463 (2015).

    Article  Google Scholar 

  28. M. Soylak and E. Yilmaz, J. Hazard Mater., 182, 704–709 (2010).

    Article  Google Scholar 

  29. M. Shirani, F. Salari, S. Habibollahi, and A. Akbari, Microchem. J., 152, 104332–104340 (2020).

    Article  Google Scholar 

  30. M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, J. Hazard Mater., 150, 533–540 (2008).

    Article  Google Scholar 

  31. A. A. Gouda, A. M. Summan, and A. H. Amin, RSC Adv., 6, 94048–94057 (2016).

    Article  ADS  Google Scholar 

  32. N. K. Temel, K. Sertakan, and R. Gürkan, Biol. Trace Elem. Res., 186, 597–607 (2019).

    Article  Google Scholar 

  33. H. Xu, W. Zhang, X. Zhang, J. Wang, and J. Wang, Proc. Environ. Sci., 18, 258–263 (2013).

    Article  Google Scholar 

  34. A. Moghimi and M. J. Poursharifi, Asian J. Chem., 23, 1435–1438 (2011).

    Google Scholar 

  35. M. Bahram and S. Khezri, Anal. Methods, 4, 384–393 (2012).

    Article  Google Scholar 

  36. M. Soylak and M. Koksal, Microchem. J., 147, 832–837 (2019)

    Article  Google Scholar 

  37. S. M. Sorouraddin, M. A. Farajzadeh, and T. Okhravi, Sep. Sci. Technol., 55, 2955–2966 (2020).

    Article  Google Scholar 

  38. T. Okhravi, S. M. Sorouraddin, M. A. Farajzadeh, and A. Mohebbi, Anal. Bioanal. Chem., 412, 1675–1684 (2020).

    Article  Google Scholar 

  39. Ç. Arpa and I. Arıdaşır, Food Chem., 284, 16–22 (2019).

    Article  Google Scholar 

  40. N. Khorshidi and A. Niazi, Sep. Sci. Technol., 51, 1675–1683 (2016).

    Article  Google Scholar 

  41. B. Barfi, M Rajabi, and A. Asghari, Biol. Trace Elem. Res., 170, 496–507 (2016).

    Article  Google Scholar 

  42. H. R. Sobhi, A. Mohammadzadeh, M. Behbahani, and A. Esrafili, Microchem. J., 146, 782–788 (2019).

    Article  Google Scholar 

  43. M. Rajabi, M. Abolhosseini, A. Hosseini-Bandegharaei, M. Hemmati, and N. Ghassab, Microchem. J., 159, Article ID 105450 (2020).

  44. J. M. Nakhaei, M. R. Jamali, S. Sohrabnezhad, and R. Rahnama, Microchem. J., 144, 88–92 (2019).

    Article  Google Scholar 

  45. B. Feist and R. Sitko, Microchem. J., 147, 30–36 (2019).

    Article  Google Scholar 

  46. C. H. Latorre, J. A. Mendez, J. B. Garcia, S. G. Martin, and R. M. P. Crecente, Anal. Chim. Acta, 749, 16–35 (2012).

    Article  Google Scholar 

  47. M. Krawczyk and M. Jeszka-Skowron, Microchem. J., 126, 296–301 (2016).

    Article  Google Scholar 

  48. M. Soylak, E. Yilmaz, M. Ghaedi, and M. Montazerozohori, Toxicol. Environ. Chem., 93, 873–885 (2011).

    Article  Google Scholar 

  49. B. Feist, Food Chem., 209, 37–42 (2016).

    Article  Google Scholar 

  50. Z. A. ALOthman, E. Yilmaz, M. Habila, I. H. Alsohaimi, A. M. Aldawsari, N. M. Al-Harbi, and M. Soylak, RSC Adv., 5, 106905–106911 (2015).

    Article  ADS  Google Scholar 

  51. E. Yilmaz and M. Soylak, Environ. Monit. Assess., 186, 5461–5468 (2014).

    Article  Google Scholar 

  52. Z. A. ALOthman, E. Yilmaz, M. Habila, and M. Soylak, Ecotoxicol. Environ. Saf., 112, 74–79 (2015).

    Article  Google Scholar 

  53. A. A. Gouda and S. M. Al Ghannam, Food Chem., 202, 409–416 (2016).

    Article  Google Scholar 

  54. S. Vellaichamy and K. Palanivelu, J. Hazard Mater., 185, 1131–1139 (2011).

    Article  Google Scholar 

  55. Z. A. Al-Othman, M. Habilaa, E. Yilmaz, and M. Soylak, Microchim. Acta, 177, 397–403 (2012).

    Article  Google Scholar 

  56. A. A. Gouda, Int. J. Environ. Anal. Chem., 94, 1210–1222 (2014).

    Article  Google Scholar 

  57. A. M. Khedr and M. Gaber, Spectrosc. Lett., 38, 431–445 (2005).

    Article  ADS  Google Scholar 

  58. A. M. Khedr, Chem. Pap., 60, 138–142 (2006).

    Article  Google Scholar 

  59. H. T. S. Britton, Hydrogen Ions, 4th ed., London, Chapman and Hall, p. 1168 (1952).

  60. A. A. Gouda, Talanta, 146, 435–441 (2016).

    Article  Google Scholar 

  61. L. A. Currie, Anal. Chim. Acta, 391, 105–126 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gouda.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, p. 433, May–June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouda, A.A., El Sheikh, R., El Sayed, H.M. et al. Ultrasound-Assisted Dispersive Microsolid-Phase Extraction for Preconcentration of Trace Cobalt and Nickel in Environmental Samples Prior to their Determination by Flame Atomic Absorption Spectrometry. J Appl Spectrosc 89, 567–578 (2022). https://doi.org/10.1007/s10812-022-01396-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01396-4

Keywords

Navigation