Skip to main content
Log in

Sparsity-Based Thresholding Criterion for Spurious Echo Removal and Denoising Magnetic Resonance Spectra Using Rational-Dilation Wavelet Transform

  • Published:
Journal of Applied Spectroscopy Aims and scope

Biological signals such as magnetic resonance spectroscopy signals are susceptible to noise and artifacts. The information obtained from these signals is significant in analyzing human physiological conditions. MRS, a nonionizing and noninvasive method, presents an effective alternative method to biopsy for diagnosis and analysis from generated signals that are rich in chemical information of the tissues in the region of interest. A persisting problem of this method is the presence of noise and artifacts causing misinterpretation and subsequent incorrect diagnosis. The present research proposes a denoising strategy using the rational-dilation wavelet transform-based signal decomposition and a thresholding criterion designed using the Lpq-norm-based sparsity measure of the decomposition levels of the signal. Compared with the standard state-of-the-art methods, which are effective in denoising but can cause distortion of the signal at discontinuities, the proposed method can remove artifacts such as spurious echoes present in the magnetic resonance signals and improve the signal-to-noise ratio without distorting the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Mountford, P. Stanwell, A. Lin, S. Ramadan, and B. Ross, Chem. Rev., 110, No. 5, 3060–3086 (2010), https://doi.org/10.1021/cr900250y.

    Article  Google Scholar 

  2. A. Lin, T. Tran, S. Bluml, S. Merugumala, H.-J. Liao, and B. Ross, Sem. Neurol., 32, No. 4, 432–453 (2013), https://doi.org/10.1055/s-0032-1331814.

    Article  Google Scholar 

  3. S. P. Kyathanahally, A. Döring, and R. Kreis, Mag. Res. Med., 80, No. 3, 851–863 (2018), https://doi.org/10.1002/mrm.27096.

    Article  Google Scholar 

  4. I. Daubechies, Ten Lectures on Wavelets, Philadelphia, Pa: Society for Industrial and Applied Mathematics (1992).

  5. S. G. Mallat, IEEE Trans. Acoust., Speech, Signal Proc., 37, No. 12, 2091–2110 (1989), https://doi.org/10.1109/29.45554.

    Article  Google Scholar 

  6. F. Ehrentreich, Anal. Bioanal. Chem., 372, No. 1, 115–121 (2002), https://doi.org/10.1007/s00216-001-1119-4.

    Article  Google Scholar 

  7. J. Karvanen and A. Cichocki, Measuring Sparseness of Noisy Signals, 4th Intю Symposium Independent Component Analysis and Blind Signal Separation, pp. 125–130 (2003).

  8. I. Bayram and I. W. Selesnick, IEEE Trans. Signal Process, 57, No. 8, 2957–2972 (2009), https://doi.org/10.1109/TSP.2009.2020756.

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Ding, D. Zhou, X. He, and H. Zha, Proc. Int. Conf. Machine Learning – ICML'06, Pittsburgh, Pennsylvania, pp. 281–288 (2006), https://doi.org/10.1145/1143844.1143880.

  10. M. Khosravy, N. Nitta, N. Gupta, N. Patel, and N. Babaguchi, Compressive Sensing in Healthcare, Elsevier, pp. 43–63 (2020).

  11. W. Wu et al., J. Chem. Inf. Model., 46, No. 2, 863–875 (2006), https://doi.org/10.1021/ci050316w.

    Article  Google Scholar 

  12. G. F. Giskeødegård et al., Anal. Chim. Acta, 683, No. 1, 1–11 (2010), https://doi.org/10.1016/j.aca.2010.09.026.

    Article  Google Scholar 

  13. L. Chen, Z. Weng, L. Goh, and M. Garland, J. Mag. Res., 158, Nos. 1–2, 164–168 (2002), https://doi.org/10.1016/S1090-7807(02)00069-1.

    Article  ADS  Google Scholar 

  14. F. Jiru, Europ. J. Radiology, 67, No. 2, 202–217 (2008), https://doi.org/10.1016/j.ejrad.2008.03.005.

    Article  Google Scholar 

  15. U. Klose, Mag. Res. Med., 14, No. 1, 26–30 (1990), https://doi.org/10.1002/mrm.1910140104.

    Article  Google Scholar 

  16. W. W. F. Pijnappel, A. van den Boogaart, R. de Beer, and D. van Ormondt, J. Mag. Res., 97, No. 1, 122–134 (1992), https://doi.org/10.1016/0022-2364(92)90241-X.

    Article  ADS  Google Scholar 

  17. T. Laudadio, N. Mastronardi, L. Vanhamme, P. Van Hecke, and S. Van Huffel, J. Mag. Res., 157, No. 2, 292–297 (2002), https://doi.org/10.1006/jmre.2002.2593.

    Article  ADS  Google Scholar 

  18. D. Stefan et al., Meas. Sci. Technol., 20, No. 10, Article ID 104035 (2009), https://doi.org/10.1088/0957-0233/20/10/104035.

    Article  ADS  Google Scholar 

  19. D. L. Donoho, IEEE Trans. Inform. Theory, 41, No. 3, 613–627 (1995), https://doi.org/10.1109/18.382009.

    Article  MathSciNet  Google Scholar 

  20. I. M. Johnstone and B. W. Silverman, J. Roy. Statist. Soc. Ser. B (Methodological), 59, No. 2, 319–351 (1997).

    Article  MathSciNet  Google Scholar 

  21. D. L. Donoho and I. M. Johnstone, Biometrika, 81, 425–455 (1994), https://doi.org/10.1093/biomet/81.3.425.

    Article  MathSciNet  Google Scholar 

  22. Jun Jiang, Jian Guo, Weihua Fan, and Qingwei Chen, Proc. 8th World Congress on Intelligent Control and Automation, Jinan, China, Jul. 2010, 2894–2898 (2010), https://doi.org/10.1109/WCICA.2010.5554856.

  23. G. Y. Chen and T. D. Bui, IEEE Signal Proc. Lett., 10, No. 7, 211–214 (2003), https://doi.org/10.1109/LSP.2003.811586.

    Article  ADS  Google Scholar 

  24. R. Hussein, K. B. Shaban, and A. H. El-Hag, Int. Conf. Communications, Signal Processing, and their Applications (ICCSPA'15), Sharjah, United Arab Emirates, pp. 1–5 (2015), https://doi.org/10.1109/ICCSPA.2015.7081289.

  25. C. Huimin, Z. Ruimei, and H. Yanli, Phys. Proc., 33, 1354–1359 (2012), https://doi.org/10.1016/j.phpro.2012.05.222.

    Article  ADS  Google Scholar 

  26. Y. Ding and I. W. Selesnick, IEEE Signal Proc. Lett., 22, No. 9, 1364–1368 (2015), https://doi.org/10.1109/LSP.2015.2406314.

    Article  ADS  Google Scholar 

  27. G. Chen, W. Xie, and Y. Zhao, Fourth Int. Conf. Intelligent Control and Inform. Proc. (ICICIP), Beijing, China, Jun. 2013, pp. 570–574 (2013), https://doi.org/10.1109/ICICIP.2013.6568140.

  28. L. Sendur and I. W. Selesnick, IEEE Trans. Signal Proc., 50, No. 11, 2744–2756 (2002), https://doi.org/10.1109/TSP.2002.804091.

    Article  ADS  Google Scholar 

  29. Y. Liu and X. Cheng, Fourth Int. Conf. Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, pp. 32–35 (2007), https://doi.org/10.1109/FSKD.2007.90.

  30. I. K. Fodor, J. Electron. Imaging, 12, No. 1, 151 (2003), https://doi.org/10.1117/1.1525793.

    Article  ADS  Google Scholar 

  31. C. He, J. Xing, J. Li, Q. Yang, and R. Wang, Math. Prob. Eng., 2015, 1–9 (2015), https://doi.org/10.1155/2015/280251.

    Article  Google Scholar 

  32. T. Hui, C. Lin, L. Zengli, and C. Zaiyu, Wavelet Image Denoising Based on the New Threshold Function, 4 (2013).

  33. S. Jangjit and M. Ketcham, Engineering. J., 21, No. 7, 141–155 (2017), https://doi.org/10.4186/ej.2017.21.7.141.

    Article  Google Scholar 

  34. L. Jing-yi, L. Hong, Y. Dong, and Z. Yan-sheng, Math. Prob. Eng., 2016, 1–8 (2016), https://doi.org/10.1155/2016/3195492.

    Article  Google Scholar 

  35. S. A. A. Karim, M. T. Ismail, M. K. Hasan, J. Sulaiman, and H. Sakidin, Denoising Using New Thresholding Method, Johor Bahru, Malaysia, Article ID 0300342 (2016), https://doi.org/10.1063/1.4954570.

  36. S. G. Chang, Bin Yu, and M. Vetterli, IEEE Trans. Image Process., 9, No. 9, 1532–1546 (2000), https://doi.org/10.1109/83.862633.

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Srivastava, C. L. Anderson, and J. H. Freed, IEEE Access, 4, 3862–3877 (2016), https://doi.org/10.1109/ACCESS.2016.2587581.

    Article  Google Scholar 

  38. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, IEEE Trans. Image Process., 13, No. 4, 600–612 (2004), https://doi.org/10.1109/TIP.2003.819861.

    Article  ADS  Google Scholar 

  39. I. W. Selesnick, IEEE Trans. Signal Process., 52, No. 5, 1304–1314 (2004), https://doi.org/10.1109/TSP.2004.826174.

    Article  ADS  MathSciNet  Google Scholar 

  40. T. S. Sharan, S. Sharma, and N. Sharma, J Appl. Spectr., 88, 117–124 (2021), https://doi.org/10.1007/s10812-021-01149-9.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Sagar.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, p. 430, May–June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, C., Singh, D.K. & Sharma, N. Sparsity-Based Thresholding Criterion for Spurious Echo Removal and Denoising Magnetic Resonance Spectra Using Rational-Dilation Wavelet Transform. J Appl Spectrosc 89, 542–551 (2022). https://doi.org/10.1007/s10812-022-01393-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01393-7

Keywords

Navigation