Skip to main content
Log in

Synthesis of Polyethylene Glycol–Chitosan–Nano Ag Composites and their Antibacterial Properties

  • Published:
Journal of Applied Spectroscopy Aims and scope

This study showed the synthesis of polyethylene glycol–chitosan–nano Ag (PEG–Chi–Ag) composites to improve the homogeneous distribution of nano Ag and their antibacterial properties. In particular, various concentration ratios of nano Ag to PEG–Chi were adjusted to control the microstructure of the composites. Chitosan was used as a reducing and stabilizing agent. All the composites showed a rough microstructure with a homogeneous distribution of nano Ag on the matrix. In addition, the homogeneous distribution of nano Ag on the PEG–Chi–Ag composites resulted in antibacterial activities. These results indicated that PEG–Chi–Ag composites had great potential application in antibacterial treatment and nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B, 110, 15666–15675 (2006).

    Article  Google Scholar 

  2. L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, and P. K. Chu, Biomaterials, 32, 5706–5716 (2011).

    Article  Google Scholar 

  3. R. Janardhanan, M. Karuppaiah, N. Hebalkar, and T. N. Rao, Polyhedron, 28, 2522–2530 (2009).

    Article  Google Scholar 

  4. G. A. Sotiriou, A. Meyer, J. T. N. Knijnenburg, S. Panke, and S. E. Pratsinis, Langmuir, 28, 15929–15936 (2012).

    Article  Google Scholar 

  5. O. B. Polivanova, M. Yu. Cherednichenko, E. A. Kalashnikova, and R. N. Kirakosyan, AIMS Agric. Food, 6, 631–643 (2021).

    Google Scholar 

  6. C. Srisitthiratkul, V. Pongsorrarith, and N. Intasanta, Appl. Surface Sci., 257, 8850–8856 (2011).

    Article  ADS  Google Scholar 

  7. Z. Ni, X. Gu, Y. He, Z. Wang, X. Zou, Y. Zhao, and L. Sun, RSC Adv., 8, 41722–41730 (2018).

    Article  ADS  Google Scholar 

  8. C. Yong, X. Chen, Q. Xiang, Q. Li, and X. Xing, Bio active Mater., 3, 80–86 (2018).

    Google Scholar 

  9. M. Mahmood, M. Abid, M. F. Nazar, M. N. Zafar, M. A. Raza, M. Ashfaq, A. M. Khan, S. H. Sumrra, and M. Zubair, Mater. Adv., 1, 2332–2338 (2020).

    Article  Google Scholar 

  10. Y. Shi, B. Sun, Z. Zhou, Y. Wu, and M. Zhu, Pro g. Nat. Sci.: Mater. Int., 21, 447–454 (2011).

    Article  Google Scholar 

  11. Y. Jia, G. Huang, F. Dong, Q. Liu, and W. Nie, Polymer Comp., 37, 2847–2854 (2016).

    Article  Google Scholar 

  12. K. Shameli, M. B. Ahmad, W. M. Z. W. Yunus, N. A. Ibrahim, R. A. Rahman, M. Jokar, and M. Darroudi, Int. J. Nanomed., 5, 573–579 (2010).

    Article  Google Scholar 

  13. Z. Zheng, W. Yin, J. N. Zara, W. Li, J. Kwak, R. Mamidi, M. Lee, R. K. Siu, R. Ngo, J. Wang, D. Carpenter, X. Zhang, B. Wu, K. Ting, and C. Soo, Biomaterials, 31, 9293–9300 (2010).

    Article  Google Scholar 

  14. J. Fu, J. Ji, D. Fan, and J. Shen, J. Biomed. Mater. Res. A, 79, 665–674 (2006).

    Article  Google Scholar 

  15. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B, 110, 15666–15675 (2006).

    Article  Google Scholar 

  16. L. Gharibshahi, E. Saion, E. Gharibshahi, A. H. Shaari, and K. A. Matori, PLoS One, 12, e0186094 (2017).

    Article  Google Scholar 

  17. G. Fontana, M. Licciardi, S. Mansueto, D. Schillaci, and G. Giammona, Biomaterials, 22, 2857–2865 (2001).

    Article  Google Scholar 

  18. C. Prego, D. Torres, E. Fernandez-Megia, R. Novoa-Carballal, E. Quiñoá, and M. J. Alonso, J. Control. Rel., 111, 299–308 (2006).

    Article  Google Scholar 

  19. K. S. V. K. Rao, P. R. Reddy, Y. I. Lee, and C. Kim, Carbohydrate Polymers, 87, 920–925 (2012).

    Article  Google Scholar 

  20. D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma, Carbohydrate Res., 344, 2375–2382 (2009).

    Article  Google Scholar 

  21. S. Orsi, D. Guarnieri, and P. A. Netti, J. Mater Sci: Mater Med., 21, 1013–1020 (2010).

    Google Scholar 

  22. A. H. Shah, E. Manikandan, M. Basheer Ahmed, and Ganesan, J. Nanomed. Nanotechol., 4, 3 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. D. Tam or V.-H. Pham.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, pp. 381–385, May–June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toan, L.V., Thong, N.H., Quan, D.H. et al. Synthesis of Polyethylene Glycol–Chitosan–Nano Ag Composites and their Antibacterial Properties. J Appl Spectrosc 89, 482–486 (2022). https://doi.org/10.1007/s10812-022-01383-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01383-9

Keywords

Navigation