Skip to main content
Log in

Ultraviolet Spectrophotometric Method for the Determination of Amitriptyline Hydrochloride

  • Published:
Journal of Applied Spectroscopy Aims and scope

Amitriptyline hydrochloride (AMH) is a first-generation tricyclic antidepressant drug. Higher doses of AMH may lead to undesirable clinical conditions such as cardiac arrhythmia, anxiety (sleep disturbances), tachycardia, convulsion, and hyperglycemia. Hence, the accurate analytical method for the quantification of AMH is crucial. The reported AMH quantification methods are less sensitive and require chromogenic reactions. A newly developed spectrophotometric method for the quantification of AMH in the aqueous medium (greener) without using chromogenic conditions is reported. The λmax of AMH is found to be 239 nm, and the method has been validated according to the International Conference on Harmonization Q2A guidelines. The linearity of the developed method is within the range 0.5–2.5 μg/ mL with the correlation coefficient (r2) of 0.9949, which indicates the higher sensitivity of the detection compared with the reported spectrophotometric methods. The percentage recovery (98–102%), precision, limit of detection (0.0266 μg/mL), and limit of quantification (0.0806 μg/mL) data also ensure the method efficiency. The forced degradation studies under the influence of various external factors also suggested the validity of the proposed method for routine analysis. The method was extended for the quantification of AMH present in marketed formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hisaoka-Nakashima, K. Miyano, C. Matsumoto, N. Kajitani, H. Abe, M. Okada-Tsuchioka, A. Yokoyama, Y. Uezono, N. Morioka, Y. Nakata, and M. Takebayashi, J. Biol. Chem., 290, Article ID 13678 (2015).

  2. R. L. Carasso, S. Yehuda, and M. Streifler, Int. J. Neurosci., 9, 191 (1979).

    Article  Google Scholar 

  3. H. Obata, Int. J. Mol. Sci., 18, Article ID 2483 (2017).

  4. M. King and N. Ashraf, Drug Saf. Case Rep., 5, 1 (2018).

    Article  Google Scholar 

  5. E. Fattahian, V. Hajhashemi, M. Rabbani, M. Minaiyan, and P. Mahzouni, Iran. J. Pharm. Res., 15, 125 (2016).

    Google Scholar 

  6. P. K. Nazarian and S. H. Park, Ment. Health Clin., 4, 41 (2014).

    Article  Google Scholar 

  7. P. J. Wiffen, J. Pain Palliat. Care Pharmacother., 27, 179 (2013).

    Google Scholar 

  8. K. Lawson, Biomedicines, 5, 24 (2017).

    Article  Google Scholar 

  9. National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 11065, Amitriptyline hydrochloride. Retrieved May 1, 2021, https://pubchem.ncbi.nlm.nih.gov/compound/Amitriptyline-hydrochloride.

  10. K. A. Talerico, Am. J. Nurs., 99 (1999).

  11. L. Hertle and A. van Ophoven, Aktuelle Urol., 41, Suppl. 1, S61 (2010).

    Article  Google Scholar 

  12. P. Soni, D. Sinha, and R. Patel, J. Spectrosc., Article ID 783457 (2013).

  13. T. Aman, A. A. Kazi, M. I. Hussain, S. Firdous, and I. U. Khan, Anal. Lett., 33, Article ID 2477 (2000).

  14. K. Susmitha, M. Thirumalachary, T. Charan Singh, and G. Venkateshwarlu, J. Chil. Chem. Soc. 59, Article ID 2265 (2014).

  15. F. A. Mohamed, H. A. Mohamed, S. A. Hussein, and S. A. Ahmed, J. Pharm. Biomed. Anal., 39, 139 (2005).

    Article  Google Scholar 

  16. A. E. El-Gendy, M. G. El-Bardicyy, H. M. Loutfy, and M. F. El-Tarras, Spectrosc. Lett., 26, Article ID 1649 (1993).

  17. R. M. El-Nashar, N. T. Abdel Ghani, and A. A. Bioumy, Microchem. J., 78, 107 (2004).

    Article  Google Scholar 

  18. S. Patel and N. J. Patel, Indian J. Pharm. Sci., 71, 472 (2009).

    Article  Google Scholar 

  19. G. A. Smith, P. Schulz, K. M. Giacomini, and T. F. Blaschke, J. Pharm. Sci., 71, 581 (1982).

    Article  Google Scholar 

  20. R. Linden, M. V. Antunes, A. L. Ziulkoski, M. Wingert, P. Tonello, M. Tzvetkov, and A. A. Souto, J. Brazilian Chem. Soc., 19, 35 (2008).

    Article  Google Scholar 

  21. I. A. Naguib, N. A. Ali, F. A. Elroby, M. R. El Ghobashy, and F. F. Abdallah, Bioanalysis, 12, 1521 (2020).

    Article  Google Scholar 

  22. M. Blessy, R. D. Patel, P. N. Prajapati, and Y. K. Agrawal, J. Pharm. Anal., 4, 159 (2014).

    Article  Google Scholar 

  23. P. K. Porwal and N. Upmanyu, Acta Pharm. Sin. B, 4, 438 (2014).

    Article  Google Scholar 

  24. D. W. G. Harron, Textb. Pharm. Med., 522 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Durai Ananda Kumar.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, pp. 374–380, May–June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.D.A., Haque, M.S. Ultraviolet Spectrophotometric Method for the Determination of Amitriptyline Hydrochloride. J Appl Spectrosc 89, 476–481 (2022). https://doi.org/10.1007/s10812-022-01382-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01382-w

Keywords

Navigation