Skip to main content
Log in

Gyrotropic Features of a Nonideal Optically Active 1D Photonic Orientationally Disordered Crystal

  • Published:
Journal of Applied Spectroscopy Aims and scope

The gyrotropic characteristics of a nonideal unidimensional photonic crystal with an arbitrary number of sublattices (one of which, potassium dithionate K2S2O6, is optically active), arising from random substitution of the K2S2O6 layers of the sublattice by layers of model orientationally disordered molecular crystal, were investigated. A numerical model of the dependence of the optical activity of a nonideal 1D superlattice on the concentration both of the impurity layers and of the point defects (of the orientationally disordered molecules) in the impurity layers of the multilayer was developed by microscopic description of the specific angle of rotation of the plane of polarization of light in the molecular crystal with a primitive lattice in the exciton region of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kizel′, Sov. Phys. Usp., 28, 1015–1030 (1985).

    Article  ADS  Google Scholar 

  2. J. R. Mohrig, C. N. Hammond, and P. F. Schatz, Techniques in Organic Chemistry, W. H. Freeman and Co. Publishers (2010), p. 209.

  3. F. I. Fedorov, Theory of Gyrotropy [in Russian], Nauka i Tekhnika, Minsk (1976).

  4. A. T. Martin, S. M. Nichols, S. Li, M. Tan, and B. Kahr, J. Appl. Cryst., 50, 1117–1124 (2017).

    Article  Google Scholar 

  5. A. P. Oreshko, B. V. Mill′, E. N.Ovchinnikova, A. Rogalev, F. Vil′khelm, and V. E. Dmitrienko, Kristallografiya, 63, No. 2, 176–183 (2018).

    Google Scholar 

  6. A. F. Konstantinova, T. G. Golovina, and A. P. Dudka, Kristallografiya, 63, No. 2, 218–224 (2018).

    Google Scholar 

  7. A. P. Dudka, T. G. Golovina, and A. F. Konstantinova, Kristallografiya, 64, No. 6, 930–934 (2019).

    ADS  Google Scholar 

  8. T. G. Golovina, A. F. Konstantinova, and V. I. Timofeev, Kristallografiya, 65, No. 5, 677–704 (2020).

    Google Scholar 

  9. V. V. Rumyantsev, S. A. Fedorov, and K. V. Gumennyk, Photonic Crystals: Optical Properties, Fabrication and Applications (Ed. William L. Dahl), Nova Science Publishers, Inc., New York (2011), pp. 183–200.

  10. V. V. Rumyantsev, S. A. Fedorov, and K. V. Gumennik, Superlattices and Microstructures, 51, No. 1, 86–91 (2012).

    Article  ADS  Google Scholar 

  11. O. A. Dubovskii, FTT, 13, No. 10, 3032–3034 (1971).

    Google Scholar 

  12. G. N. Zhizhin and A. Usmanov, FTT, 13, 1538–1544 (1971).

    Google Scholar 

  13. H. Ehrenreich and L. Schwartz, The Electronic Structure of Alloys, Academic Press, New York (1976), p. 200.

    Google Scholar 

  14. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems [in Russian], Nauka, Moscow (1982), p. 360.

  15. V. S. Los′, Teor. Matem. Fizika, 73, No. 1, 85–102 (1987).

    Google Scholar 

  16. V. V. Rumyantsev, S. A. Fedorov, and K. V. Gumennik, Theory of Optically Active Imperfect Composite Materials. Selected Topics, Colne, Lamdert Academic Publishing (2012), p. 52.

  17. A. E. Rybalka, V. V. Rumyantsev, and S. A. Fedorov, Monitoring. Nauka Tekhnologiya, 44, No. 2, 79–86 (2020).

    Google Scholar 

  18. V. V. Rumyantsev, S. A. Fedorov, and M. V. Proskurenko, Physica B, 442, 57–59 (2014).

    Article  ADS  Google Scholar 

  19. V. A. Kizel′ and V. I. Burkov, Gyrotropy of Crystals [in Russian], Nauka, Moscow (1980).

  20. A. E. Rybalka, V. V. Rumyantsev, S. A. Fedorov, and K. V. Gumennik, Opt. Spektrosk., 129, No. 7, 871–875 (2021).

    Google Scholar 

  21. Chun Zhang and D. E. Hirt, Polymer, 48, No. 23, 6748–6754 (2007).

    Article  Google Scholar 

  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, Princeton University Press, Princeton (2008), p. 305.

  23. R. Tsu, Superlattice to Nanoelectronics, Elsevier, London (2011).

  24. V. V. Rumyantsev, S. A. Fedorov, and M. V. Proskurenko, J. Optoelectron. Eng., 1, No. 1, 19–27 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rumyantsev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, pp. 354–359, May–June, 2022. https://doi.org/10.47612/0514-7506-2022-89-3-354-359.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, V.V., Fedorov, S.A., Gumennyk, K.V. et al. Gyrotropic Features of a Nonideal Optically Active 1D Photonic Orientationally Disordered Crystal. J Appl Spectrosc 89, 456–461 (2022). https://doi.org/10.1007/s10812-022-01380-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01380-y

Keywords

Navigation