Skip to main content

Advertisement

Log in

Calculation of the Förster Resonance Energy Transfer Parameters in Nanospheres Containing CdSe/ZnS Quantum Dots and Diarylethene

  • Published:
Journal of Applied Spectroscopy Aims and scope

An analysis is presented for theoretical model studies of photochromic systems with reversible fluorescence modulation derived from polymer nanospheres containing CdSe/ZnS semiconductor quantum dots (QDs) and photochromic diarylethene DAE2 molecules. Using the theory of Förster resonance energy transfer (FRET), a model is constructed for the efficiency of modulation of the QD fluorescence E(r) caused by photochromic transformations of the DAE2 molecules located near the QD due to the FRET mechanism. The range of optimal values was determined for the parameters that affect the efficiency of the fluorescence modulation due to FRET. The FRET efficiency E(r) is given for some boundary values of factors affecting this phenomenon. The value E(r) ~ 0.7 can be achieved at distances between donors and acceptors r = 4.5 nm if one QD with a fluorescence quantum yield Q = 0.4 accounts for at least n = 16 DAE2 molecules (or at Q = 0.8 and n = 8) as well as at distances r = 3 nm (Q = 0.1 and n = 6, Q = 0.4 and n = 2, Q = 0.8 and n = 1). The results obtained can be used to optimize the structure and procedure for the synthesis of photochromic luminescent nanospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhang, Q. Zou, and H. Tian, Adv. Mater., 25, 378–399 (2013).

    Article  ADS  Google Scholar 

  2. R. Klajn, J. F. Stoddart, and B. A. Grzybowski, Chem. Soc. Rev., 39, 2203–2237 (2010).

    Article  Google Scholar 

  3. J. Cusido, E. Deniz, and F. M. Raymo, Eur. J. Org. Chem., 13, 2031–2045 (2009).

    Article  Google Scholar 

  4. Y. Hasegawa, T. Nakagawa, and T. Kawai, Coord. Chem. Rev., 254, 2643–2631 (2010).

    Article  Google Scholar 

  5. F. M. Raymo and M. Tomasulo, J. Phys. Chem. A, 109, 7343–7352 (2005).

    Article  Google Scholar 

  6. B. L. Feringa (Ed.), Molecular Switches, WileyVCH, Weinheim (2001), pp. 37–60.

    Google Scholar 

  7. S. A. Díaz, G. O. Menéndez, M. H. Etchehon, L. Giordano, T. M. Jovin, and E. A. Jares-Erijman, ACS Nano, 5, 2795–2805 (2011).

    Article  Google Scholar 

  8. I. Yildiz, E. Deniz, and F. M. Raymo, Chem. Soc. Rev., 38, 1859–1867 (2009).

    Article  Google Scholar 

  9. I. Yildiz, M. Tomasulo, and F. M. Raymo, J. Mater. Chem., 18, 5577–5584 (2008).

    Article  Google Scholar 

  10. M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, Chem. Rev., 114, 12174–12277 (2014).

    Article  Google Scholar 

  11. V. A Barachevsky, O. V. Venidiktova, O. I. Kobeleva, A. M. Gorelik, A. O. Ayt, M. M. Krayushkin, A. R. Tameev, G. I. Sigeikin, M. A. Saveliev, and G. T. Vasilyuk, IEEENANO2015: Nanotechnology, Proc. IEEE, 358–361 (2015).

  12. P. V. Karpach, A. A. Scherbovich, G. T. Vasilyuk, V. I. Stsiapura. A. O. Ayt, V. A. Barachevsky, A. R. Tuktarov, A. A. Khuzin, and S. A. Maskevich, J. Fluoresc., 29, No. 6, 1311–1320 (2019).

    Article  Google Scholar 

  13. V. A. Barachevsky, O. I. Kobeleva, A. O. Ayt, A. M. Gorelik, T. M. Valova, M. M. Krayushkin, V. N. Yarovenko, K. S. Levchenko, V. V. Kiyko, and G. T. Vasilyuk, Opt. Mater., 35, 1805–1809 (2013).

    Article  ADS  Google Scholar 

  14. V. A. Barachevskii, O. I. Kobeleva, O. V. Venidiktova, A. O. Ait, G. T. Vasilyuk, S. A. Maskevich, and M. M. Krayushkin, Kristallografiya, 64, No. 4, 820–824 (2019).

    ADS  Google Scholar 

  15. V. A. Barachevsky, O. V. Venidiktova, T. M. Valova, A. M. Gorelik, R. Vasiliev, A. Khuzin, A. R. Tuktarov, P. V. Karpach, V. I. Stsiapura, G. T. Vasilyuk, and S. A. Maskevich, Photochem. Photobiol. Sci., 18, 2661–2665 (2019).

    Article  Google Scholar 

  16. A. A. Scherbovich, S. A. Maskevich, P. V. Karpach, G. T. Vasilyuk, V. I. Stsiapura, O. V. Venidiktova, A. O. Ayt, V. A. Barachevsky, A. A. Khuzin, A. R. Tuktarov, and M. Artemyev, J. Phys. Chem. C, 124, 27064–27070 (2020).

    Article  Google Scholar 

  17. A. Fedosyuk, A. Radchanka, A. Antanovich, A. Prudnikau, M. A. Kvach, V. Shmanai, and M. Artemyev, Langmuir, 32, No. 8, 1955–1961 (2016).

    Article  Google Scholar 

  18. A. Sukhanova, K. Even-Desrumeaux, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, and I. Nabiev, Nat. Protoc. Protoc. Exchange (2012); https://doi.org/10.1038/protex.2012.042.

  19. B. Wieb VanDerMeer, Methods Appl. Fluoresc., 8, No. 3, Article ID 030401 (2020).

  20. S. S. Vogel, T. A. Nguyen, B. W. van der Meer, and P. S. Blank, PLoS One, 7, No. 11, e49593 (2012).

    Article  ADS  Google Scholar 

  21. M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, Chem PhysChem., 13, 330–335 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Karpach.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, pp. 360–368, May–June, 2022. https://doi.org/10.47612/051475062022893360368.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpach, P.V., Maskevich, S.A., Vasilyuk, G.T. et al. Calculation of the Förster Resonance Energy Transfer Parameters in Nanospheres Containing CdSe/ZnS Quantum Dots and Diarylethene. J Appl Spectrosc 89, 462–470 (2022). https://doi.org/10.1007/s10812-022-01376-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01376-8

Keywords

Navigation