Skip to main content
Log in

EPR Study of Accumulation and Toxic Effect of Iron and Copper During the Development of Solanum tuberosum L. in vitro

  • Published:
Journal of Applied Spectroscopy Aims and scope

The migration and accumulation of iron and copper ions during the growth of Solanum tuberosum L. vial potatoes were studied. The speciation and content of the metals in the tissues of potatoes grown under factorostatic conditions were determined by elemental analysis and electron paramagnetic resonance (EPR). The toxic effect of the studied heavy metals manifested in the physicochemical characteristics (change of EPR signals and metal accumulations in plant organs) and biometric parameters as the contents of metal salts in the nutrient medium increased. The EPR spectra also showed a narrow singlet typical for stable semiquinone radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Rout and S. Sahoo, Rev. Agric. Sci., 3, 1–24 (2015).

    Article  Google Scholar 

  2. I. Yruela, Braz. J. Plant Physiol., 17, No. 1, 145–156 (2005).

    Article  ADS  Google Scholar 

  3. E. G. Mulder, Plant Soil, 2, No. 1, 59–121 (1949).

    Article  Google Scholar 

  4. J. M. Connorton, J. Balk, and J. Rodriguez-Celma, Metallomics, 9, No. 7, 813–823 (2017).

    Article  Google Scholar 

  5. J. C. Fernandes and F. S. Henriques, Bot. Rev., 57, 246–273 (1991).

    Article  Google Scholar 

  6. W. G. Hopkins and N. P. A. Huner, Introduction to Plant Physiology, 4th Ed., J. Wiley & Sons, New York (2008).

  7. N. Terry and A. M. Zayed, Iron Nutrition in Soils and Plants. Developments in Plant and Soil Sciences, Vol. 59, Springer, Dordrecht (1995), pp. 283–294.

  8. A. F. Meysurova and A. A. Notov, J. Appl. Spectrosc., 83, 832–839 (2016).

    Article  ADS  Google Scholar 

  9. J. Briffa, E. Sinagra, and R. Blundell, Heliyon, 6, No. 9, Article ID e04691 (2020).

  10. A. F. Meysurova and A. A. Notov, J. Appl. Spectrosc., 87, 83–91 (2020).

    Article  ADS  Google Scholar 

  11. S. S. Khutsishvili, A. I. Perfileva, O. A. Nozhkina, A. Yu. Dyrkach, T. N. Borodina, N. I. Tikhonov, and T. I. Vakul′skaya, Magn. Res. Solids, 22, No. 3, Article ID 20301 (2020).

  12. E. L. Connolly and M. Guerinot, Genome Biol., 3, No. 8, Article ID 1024 (2002).

  13. H. Yamasaki, M. Pilon, and T. Shikanai, Plant Signaling Behav., 3, No. 4, 231–232 (2008).

    Article  Google Scholar 

  14. D. J. E. Ingram, Biological and Biochemical Applications of Electron Spin Resonance, Adam Hilder Ltd., London (1969).

  15. S. S. Khutsishvili, M. V. Lesnichaya, T. I. Vakul′skaya, G. Dolmaa, G. P. Aleksandrova, A. L. Rakevich, and B. G. Sukhov, Spectrosc. Lett., 51, No. 4, 169–173 (2018).

    Article  ADS  Google Scholar 

  16. P. V. Bondarenko, L. T. B. Nguyet, S. E. Zhuravleva, and E. M. Trukhan, J. Appl. Spectrosc., 84, 646–649 (2017).

    Article  ADS  Google Scholar 

  17. P. V. V. Prasad and M. Djanaguiraman, Encyclopedia of Applied Plant Sciences, Academic Press, Cambridge (2017), pp. 246–255.

  18. J. G. Farias, S. T. Nunes, D. Sausen, M. A. G. Nunes, F. A. Neis, L. C. Garlet, P. A. A. Nunes, V. L. Dressler, M. R. C. Schetinger, L. V. Rossato, E. Girotto, G. Brunetto, and F. T. Nicoloso, J. Appl. Bot. Food Qual., 91, 249–259 (2018).

    Google Scholar 

  19. T. Murashige and F. Skoog, Physiol. Plant., 15, No. 3, 473–497 (1962).

    Article  Google Scholar 

  20. M. J. Lambert, Preparation of Plant Material for Estimating a Wide Range of Elements, Forestry Commission of New South Wales, Sydney (1976).

  21. H. Inoue, K. Higuchi, M. Takahashi, H. Nakanishi, S. Mori, and N. K. Nishizawa, Plant J., 36, No. 3, 366–381 (2003).

    Article  Google Scholar 

  22. H. Ram, S. Sardar, and N. Gandas, Physiol. Plant., 171, 823–832 (2021).

  23. M. Rehman, L. Liu, Q. Wang, M. H. Saleem, S. Bashir, S. Ullah, and D. Peng, Environ. Sci. Pollut. Res., 26, 18003–18016 (2019).

    Article  Google Scholar 

  24. J. Cambrolle, J. M. Mancilla-Leyton, S. Munoz-Valles, E. Figueroa-Lugue, T. Lugue, and M. E. Figueroa, Environ. Sci. Pollut. Res., 20, 8839–8847 (2013).

    Article  Google Scholar 

  25. R. A. Festa and D. J. Thiele, Curr. Biol., 21, No. 21, R877–R883 (2011).

  26. M. Filek, M. Labanowska, M. Kurdziel, and A. Sieprawska, Toxins, 9, No. 6, 178 (2017).

    Article  Google Scholar 

  27. G. Giridhar, D. Punyaseshudu, M. V. V. K. Srinivas Prasad, M. Venkateswarlu, and G. Srinivas, Acta Phys. Pol. A, 123, 761–765 (2013).

    Article  ADS  Google Scholar 

  28. G. F. Prozorova, S. A. Korzhova, A. S. Pozdnyakov, A. I. Emel'yanov, S. S. Khutsishvili, and T. I. Vakul′skaya, Russ. J. Appl. Chem., 86, No. 9, 1452–1455 (2013).

    Article  Google Scholar 

  29. V. Cnockaert, K. Maes, I. Bellemans, T. Crivits, H. Vrielinck, B. Blanpain, and K. Verbeken, J. Non-Cryst. Solids, 536, Article ID 120002 (2020).

  30. S. S. Khutsishvili, T. I. Vakul′skaya, G. P. Aleksandrova, and B. G. Sukhov, Micro Nano Lett., 12, No. 6, 418–421 (2017).

  31. G. Celiz, S. A. Suarez, A. Arias, J. Molina, C. D. Brondino, and F. Doctorovich, BioMetals, 32, 595–610 (2019).

    Article  Google Scholar 

  32. F. A. Taiwo, J. Spectrosc. (Hindawi), 17, 53–63 (2003).

    Article  Google Scholar 

  33. A. V. Artem′ev, O. V. Vysotskaya, L. A. Oparina, A. S. Bogomyakov, S. S. Khutsishvili, I. V. Sterkhova, V. I. Ovcharenko, and B. A. Trofimov, Polyhedron, 119, 293–299 (2016).

    Article  Google Scholar 

  34. S. S. Khutsishvili, A. I. Perfileva, O. A. Nozhkina, T. V. Ganenko, and K. V. Krutovsky, Int. J. Mol. Sci., 22, No. 21, Article ID 12006 (2021).

  35. M. Łabanowska, M. Filek, M. Kurdziel, E. Bednarska, A. Dlubacz, and H. Hartikainen. J. Plant Physiol., 169, 1234–1242 (2012).

    Article  Google Scholar 

  36. M. Polat and M. Korkmaz, Food Chem., 107, No. 2, 956–961 (2008).

    Article  Google Scholar 

  37. I. Morkunas, M. Formela, L. Marczak, M. Stobiecki, and W. Bednarski, Protoplasma, 250, 63–75 (2013).

    Article  Google Scholar 

  38. J. P. Kehrer, Crit. Rev. Toxicol., 23, No. 1, 21–48 (1993).

    Article  Google Scholar 

  39. P. J. O′Brien, Chem.-Biol. Interact., 80, No. 1, 1–41 (1991).

  40. J. R. Widhalm and D. Rhodes, Hortic. Res., 3, Article ID 16046 (2016).

  41. B. Testa, The Metabolism of Drugs and Other Xenobiotics, Academic, New York (1995).

  42. S. S. Khutsishvili, N. I. Tikhonov, D. V. Pavlov, T. I. Vakul′skaya, M. V. Penzik, A. N. Kozlov, M. V. Lesnichaya, G. P. Aleksandrova, and B. G. Sukhov, J. Therm. Anal. Calorim., 137, No. 4, 1181–1188 (2019).

    Article  Google Scholar 

  43. S. S. Khutsishvili, T. I. Vakul′skaya, G. P. Aleksandrova, and B. G. Sukhov, J. Cluster Sci., 28, No. 6, 3067–3074 (2017).

    Article  Google Scholar 

  44. A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, A. V. Sidorov, M. V. Lesnichaya, G. P. Aleksandrova, G. Dolmaa, I. V. Klimenkov, and B. G. Sukhov, Russ. Chem. Bull., 67, 157–163 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Khutsishvili.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 2, pp. 238–245, March–April, 2022. https://doi.org/10.47612/0514-7506-2022-89-2-238-245

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutsishvili, S.S., Perfileva, A.I., Nozhkina, O.A. et al. EPR Study of Accumulation and Toxic Effect of Iron and Copper During the Development of Solanum tuberosum L. in vitro. J Appl Spectrosc 89, 288–295 (2022). https://doi.org/10.1007/s10812-022-01356-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01356-y

Keywords

Navigation