Skip to main content
Log in

A Novel Turn-On the Fluorescence Sensor for H2S and its Applications in Bioimaging

  • Published:
Journal of Applied Spectroscopy Aims and scope

A fluorescent probe II, 6-azido-2-(2-hydroxyethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione with specific identification environment H2S, was designed and synthesized based on 4-bromine-1,8-naphthalimide and ethanamine. We used 4-bromine-1,8-naphthimide as raw materials to synthesize a new type of reactive fluorescent probe based on the mechanism of intramolecular charge transfer. These two materials are easily obtainable, low in cost, and can be synthesized through a simple two-step reaction. 1,8-Naphthalene anhydride has a moderate fluorescent ability as it introduces an electron-donating group at position 4. A change to its conjugate system can cause a push-pull electronic effect in the molecule and result in a very strong luminous effect. The structure of probe II was characterized by IR, ESI, and NMR. The preliminary screening was under the UV lamp. We found that probe II had a certain specific recognition effect on H2S in the DMSO solvent. After the solvent screening, DMSO was selected as a solvent to identify H2S specifically for the probe. The fluorescence spectroscopy illustrated that probe II showed green fluorescence in the DMSO solution. With the continuous addition of H2S, probe II showed red fluorescence at 510 nm, which produced a strong fluorescence emission peak that stood out from the rest of the spectrum. The experimental results showed that the probe had a very good sensitivity at detecting H2S (with a minimum concentration of 1 × 10–7 mol/L). Meanwhile, dozens of cations and anions do not interfere with the recognition of H2S by the probe molecule in the DMSO system. At the same time, we found that probe II could also recognize H2S by cell imaging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zhao, J. Kang, Y. Wen, F. Huo, Y. Zhang, and C. Yin, Spectrochim. Acta A, 189, 8–12 (2018).

    Article  ADS  Google Scholar 

  2. Y. Chen, W. Yao, Y. Ding, B. Geng, M. Lu, and C. Tang, Pulmonart. Pharmacol. Ther., 21, 40–46 (2008).

    Article  Google Scholar 

  3. V. S. Fernandes, A. S. Ribeiro, M. P. Martinez, L. M. Orensanz, M. V. Barahona, A. Martinezsaenz, P. Recio S. Benedito, S. Bustamante, and J. Carballido, J. Urol., 189, No. 4, 1567–1573 (2013).

    Article  Google Scholar 

  4. J. W. Calvert, S. Jha, S. Gundewar, J. W. Elrod, A. Ramachandran, C. B. Pattillo, C. G. Kevil, and D. J. Efer, Circ. Res., 105, No. 4, 365 (2009).

    Article  Google Scholar 

  5. S. Sowmya, Y. Swathi, L. Y. Ai, L. S. Mei, P. K. Moore, and M. Bhatia, Vasc. Pharmacol., 53, No. 4, 138–143 (2010).

    Article  Google Scholar 

  6. B. Renga, Allergy Drug Targets, 10, No. 2, 85–91 (2011).

    Article  Google Scholar 

  7. N. Shibuya, M. Tanaka, M. Yoshida, Y. Ogasawara, T. Togawa, K. Ishii, and H. Kimura, Antioxid. Redox Signal., 65, No. 4, 703–714 (2009).

    Article  Google Scholar 

  8. T. S. Bailey and M. D. Pluth, J. Am. Chem. Soc., 135, 16697–16704 (2013).

    Article  Google Scholar 

  9. Y. Zhao, H. Wang, and M. Xian, J. Am. Chem. Soc., 133, 15–17 (2011).

    Article  Google Scholar 

  10. D. G. Searcy and S. H. Lee, J. Exp. Zool., 282, 310–322 (1998).

    Article  Google Scholar 

  11. H. Beinert, R. H. Holm, and E. Munck, Science, 277, 653–659 (1997).

    Article  Google Scholar 

  12. M. Shariati-Rad, M. Irandoust, and F. Jalilvand, Int. J. Environ. Sci. Technol., 13, 1347–1356 (2016).

    Article  Google Scholar 

  13. B. Li, L. Li, K. Wang, C. Wang, L. Zhang, K. Liu, et al., Anal. Bioanal. Chem., 1–7 (2016)

  14. C. D. Pearson and W. J. Hines, Anal. Chem., 49, 123–126 (1977).

    Article  Google Scholar 

  15. M. A. H. Khan, M. E. Whelan, and R. C. Rhew, Talanta, 88, 581–586 (2012).

    Article  Google Scholar 

  16. A. R. Lippert, E. J. New, and C. J. Chang, J. Am. Chem. Soc., 133, 10078–10080 (2011).

    Article  Google Scholar 

  17. H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer, and B. Wang, Angew. Chem. Int., Ed., 50, 9672–9675 (2011).

    Article  Google Scholar 

  18. X. Zhou, S. Lee, and Z. Xu. J. Yoon, Chem. Rev., 115, 7944–8000 (2015).

    Article  Google Scholar 

  19. L. Chen, D. Wu, C. S. Lim, D. Kim, S. J. Nam, W. Lee, G. Kim, H. M. Kim, and J. Yoon, Chem. Commun., 53, 4791–4794 (2017).

    Article  Google Scholar 

  20. Y. L. Pak, J. Li, K. C. Ko, G. Kim, J. Y. Lee, and J. Yoon, Anal. Chem., 88, 5476–5481 (2016).

    Article  Google Scholar 

  21. M. D. Hartle and M. D. Pluth, Chem. Soc. Rev., 45, 6107–6117 (2016).

    Article  Google Scholar 

  22. Z. Yuan, F. Lu, M. Peng, C. W. Wang, Y. T. Tseng, Y. Du, N. Cai, C. W. Lien, H. T. Chang, Y. He, and E. S. Yeung, Anal. Chem., 87, 7267–7273 (2015).

    Article  Google Scholar 

  23. A. R. Lippert, J. Inorg. Biochem., 133, 136–142 (2014).

    Article  Google Scholar 

  24. L. A. Montoya, T. F. Pearce, R. J. Hansen, L. N. Zakharov, and M. D. Pluth, J. Org. Chem., 78, 6550–6557 (2013).

    Article  Google Scholar 

  25. L. Yi and Z. Xi, Org. Biomaol. Chem., 15, 3828–3839 (2017).

    Article  MathSciNet  Google Scholar 

  26. V. S. Lin and C. J. Chang, Curr. Opin. Chem. Biol., 16, 595–601 (2012).

    Article  Google Scholar 

  27. C. C. Zhao, X. L. Zhang, K. B. Li, et al., J. Am. Chem. Soc., 137, 8490–8498 (2015).

    Article  Google Scholar 

  28. X. Wang, J. Sun, W. H. Zhang, et al., Chem. Sci., 4, 2551–2556 (2013).

    Article  Google Scholar 

  29. Z. S. Wu, Y. L. Feng, B. Geng, J. Y. Liu, and X. J. Tang, RSC Adv., 4, 30398–30401 (2014).

    Article  ADS  Google Scholar 

  30. H. J. Peng, Y. F. Cheng, C. F. Dai, et al., Angew. Chem. Int. Ed., 50, 9672–9675 (2011).

    Article  Google Scholar 

  31. S. Chen, Z. J. Chen, W. Ren, and H. W. Ai, J. Am. Chem. Soc., 134, 9589–9592 (2012).

    Article  Google Scholar 

  32. K. J. Wu, G. Q. Li, Y. Li, L. X. Dai, and S. L. You, Chem. Commun., 47, 493–495 (2011).

    Article  Google Scholar 

  33. C. R. Liu, J. Pan, S. Li, et al., Angew. Chem. Int. Ed., 50, 10327–10329 (2011).

    Article  Google Scholar 

  34. C. R. Liu, B. Peng, S. Li, et al., Org. Lett., 14, 2184–2187 (2012).

    Article  ADS  Google Scholar 

  35. K. Sasakura, K. Hanaoka, N. Shibuya, et al., J. Am. Chem. Soc., 133, 18003–18005 (2011).

    Article  Google Scholar 

  36. F. P. Hou, L. Huang, P. X. Xi, et al., Inorg. Chem., 51, 2454–2460 (2012).

    Article  Google Scholar 

  37. X. W. Cao, W. Y. Lin, K. B. Zheng, and L. W. He, Chem. Commun., 48, 10529–10530 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ji.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 1, p. 139, January–February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhu, S., Chen, Z. et al. A Novel Turn-On the Fluorescence Sensor for H2S and its Applications in Bioimaging. J Appl Spectrosc 89, 191–200 (2022). https://doi.org/10.1007/s10812-022-01343-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01343-3

Keywords

Navigation