Skip to main content

Advertisement

Log in

Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area

  • Published:
Journal of Applied Spectroscopy Aims and scope

Severe air pollution is a serious threat to public health in the Yangtze River Delta region, where high concentrations of particulate matter are often observed in winter. In the present study, a serious aerosol pollution incident in the western Yangtze River Delta, China, was investigated by using joint inversion of CALIPSO and ground-based lidar in Hefei during 17–22 January, 2019. The data of the past two years were used in this study, and four typical weather cases were selected for comparative verification—namely, fi ne weather (less cloud, good air); cloudy weather (good air, no haze); moderate pollution weather (moderate haze, no cloud); and severe pollution weather (heavy haze, cloud). The vertical profile of aerosol backscatter as the satellite passed through Hefei city was given by the data of the CALIPSO satellite-borne lidar, CALIOP, which was compared with the vertical distribution of the range-corrected signal of ground-based lidar. Combined with analysis of meteorological data, the results showed that satellite–ground lidar can be used to observe the effect of aerosol changes on weather effectively. Subsequent experiments observed and tracked severely polluted weather event, and the data on the aerosol boundary layer was obtained which was a severe trans-boundary air pollution. The serious pollution period occurred from 22:00 to 04:00 on January 19 to 20, 2019, when the aerosol boundary layer was at its lowest (less than 0.5 km) and the boundary layer height ranged from 0.5 km to 2.2 km in other periods. Then, based on analysis of near-surface data, the changes in the boundary layer during the pollution process and the possible causes of these changes were analyzed. It was concluded that, during the pollution process, the height of the aerosol boundary layer in the Hefei area showed an obvious negative correlation with the concentration of PM2.5. Finally, HYSPLIT results showed that the source of pollution weather was mainly aerosol particles blown from the north. The results of this study provide a basis for satellite- and ground-based lidar joint observation under different weather types, as well as help in the study of urban weather change and pollution prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. L. Anderson, R. J. Charlson, S. E. Schwartz, et al., Science, 300 (5622) 1103–1104 (2003).

    Article  Google Scholar 

  2. J. M. Ge, J. Su, T. P. Ackerman, Q. Fu, et al., J. Geophys. Res., 115, D00K12 (2010).

    Google Scholar 

  3. U. Burkhardt, B. Karcher, and U. Schumann, Bull. Am. Meteorol. Soc., 91, No. 4, 479 (2010).

    Article  ADS  Google Scholar 

  4. Y. Yang, Z. Zheng, S. H. L. Yim, M. Roth, G. Ren, Z. Gao, T. Wang, Q. Li, C. Shi, G. Ning, and Y. B. Li, Geophys. Res. Lett., 47, No. 1 (2020), https://doi.org/10.1029/2019gl084288.

  5. J. H. Seinfeld and S. N. Pandis, Environment, 52, 6 (1998).

    Google Scholar 

  6. E. Saikawa, V. Naik, L.W. Horowitz, J. Liu, and D. L. Mauzerall, Atm. Environ., 43, 2814–2822 (2009).

    Article  Google Scholar 

  7. C. Lin, Y. Li, A. K. Lau, X. Deng, T. K. Tse, J. C. Fung, C. Li, Z. Li, X. Lu, X. Zhang, et al., Remote Sens. Environ., 179, 13–22 (2016).

    Article  ADS  Google Scholar 

  8. X.-W. Zeng, E. Vivian, K. A. Mohammed, S. Jakhar, M. Vaughn, J. Huang, A. Zelicoff, P. Xaverius, Z. Bai, S. Lin, et al., Atm. Environ., 138, 144–151 (2016).

    Article  Google Scholar 

  9. M. Zhong, F. Chen, and E. Saikawa, Environ. Int., 123, 256–264 (2019).

    Article  Google Scholar 

  10. J. Guo, X. Zhang, C. Cao, et al., Intern. J. Remote Sens., 31, Nos. 17–18, 4743–4755 (2010).

    Article  ADS  Google Scholar 

  11. Weifeng Wang, Jie Yu, Yang Cui, Jun He, Peng Xue, Wan Cao, Hongmei Ying, Wenkang Gao, Yingchao Yan, Bo Hu, Jinyuan Xin, Lili Wang, Zirui Liu, Yang Sun, Dongsheng Ji, and Yuesi Wang, Atm. Res., 105–117 (2018).

  12. Qun Wang, Nan Jiang, Shasha Yin, Xiao Li, Fei Yu, Yue Guo, and Ruiqin Zhang, Atm. Res., 1–11 (2017).

  13. Y. Hua, Z. Cheng, S. Wang, J. Jiang, D. Chen, S. Cai, X. Fu, Q. Fu, C. Chen, B. Xu, et al., Atm. Environ., 123, 380–391 (2015).

    Article  Google Scholar 

  14. J. P. Guo, X. Y. Zhang, Y. R. Wu, Y. Z. Zhaxi, H. Z. Che, B. La, W. Wang, and X.W. Li, Atm. Environ., 45 (37), 6802–6811 (2011).

    Article  Google Scholar 

  15. J. P. Guo, J. He, H. L. Liu, Y. C. Miao, H. Liu, and P. M. Zhai, Atm. Environ., 140, 311–319 (2016).

    Article  Google Scholar 

  16. Y. Yang, X. Zheng, Z. Gao, H. Wang, T. Wang, Y. Li, G. N. C. Lau, and S. H. L. Yim, J. Geophys. Res. Atm., 123, 10–991 (2018).

    Google Scholar 

  17. J. Wang, G. De Leeuw, S. Niu, and H. Kang, Remote Sens., 11, 1696 (2019).

    Article  ADS  Google Scholar 

  18. C. Xing, C. Liu, S. Wang, K. L. Chan, Y. Gao, X. Huang, W. Su, C. Zhang, Y. Dong, G. Fan, et al., Atm. Chem. Phys. Discuss., 17, 14275–14289 (2017).

    Article  ADS  Google Scholar 

  19. C. Shi, R. Yuan, B. Wu, Y. Meng, H. Zhang, and Z. Gong, Sci. Total Environ., 642, 1221–1232 (2018).

    Article  ADS  Google Scholar 

  20. H. Kang, B. Zhu, J. Gao, Y. He, H. Wang, J. Su, C. Pan, T. Zhu, and B. Yu, Atm. Chem. Phys., 19, 3673–3685 (2019), https://doi.org/10.5194/acp-19-3673-2019.

    Article  ADS  Google Scholar 

  21. Y. Yang, S. Yim, J. Haywood, M. Osborne, J. Chan, Z. Zeng, and J. Cheng, J. Geophys. Res. Atm., 124, No. 16, 9609–9623 (2019), https://doi.org/10.1029/2019JD031140

    Article  ADS  Google Scholar 

  22. S. Lolli, L. P. D'Adderio, J. R. Campbell, M. Sicard, E. J. Welton, A. Binci, and J. M. Baldasano, Remote Sens., 10, No. 7, 1102 (2018).

    Article  ADS  Google Scholar 

  23. S. Lolli, W. Y. Khor, M. Z. Matjafri, and H. S. Lim, Remote Sens., 11, 2660 (2019).

    Article  ADS  Google Scholar 

  24. G. Pappalardo, U. Wandinger, L. Mona, et al., J. Geophys. Res. Atm., 115 (2010).

  25. D. Wu, Z. Wang, B. Wang, et al., Appl. Phys. B - Lasers and Optics, 102, No. 1, 185–195 (2011).

    Article  ADS  Google Scholar 

  26. R. R. Rogers, C. A. Hostetler, J. W. Hair, et al., Atm. Chem. Phys., 11, No. 3, 1295–1311 (2011).

    Article  ADS  Google Scholar 

  27. J. F. Barlow, T. M. Dunbar, E. G. Nemitz, et al., Atm. Chem. Phys., 11, 2111–2125 (2011).

    Article  ADS  Google Scholar 

  28. D. L. Hlavka, J. E. Yorks, S. A. Young, et al., J. Geophys. Res. Atm., 117(D09207) (2012).

    Article  ADS  Google Scholar 

  29. J. Guo, M. Lou, Y. Miao, et al., Environ. Poll., 230, 1030–1039 (2017).

    Article  Google Scholar 

  30. K. Qin, L. Wu, M. S. Wong, et al., Atm. Environ., 141, 20–29 (2016).

    Article  Google Scholar 

  31. T. Su, J. Li, C. Li, P. Xiang, K. H. Lau, J. Guo, et al., J. Geophys. Res.: Atmospheres, 122, No. 7, 3929–3943 (2017).

    Article  ADS  Google Scholar 

  32. T. N. Su, Z. Q. Li, and R. Kahn, Atm. Chem. Phys., 18, No. 21, 15921–15935 (2018).

    Article  ADS  Google Scholar 

  33. C. Shi, I. C. Nduka, Y. Yang, Y. Huang, R. Yao, H. Zhang, B. He, C. Xie, Z. Wang, and S. H. L. Yim, Atm. Environ., 223, 117239 (2020).

    Article  Google Scholar 

  34. D. Liu, Y. Yang, Z. Cheng, H. Huang, B. Zhang, T. Ling, and Y. Shen, Opt. Express, 21, 13084–13093 (2013).

    Article  ADS  Google Scholar 

  35. Songlin Fu, Chenbo Xie, Peng Zhuang, et al., Atmosphere, 10, 656 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Xie.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 6, p. 978, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Fang, Z., Deng, X. et al. Detection by Space-Borne and Ground-Based Lidar Observations of Air Pollution on the Example of the Hefei Area. J Appl Spectrosc 88, 1304–1314 (2022). https://doi.org/10.1007/s10812-022-01312-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01312-w

Keywords

Navigation