Skip to main content

Advertisement

Log in

Forced Degradation Studies of Nateglinide by the First-Order Derivative Spectrophotometric Method and the Density Functional Theory of the Nateglinide Molecule

  • Published:
Journal of Applied Spectroscopy Aims and scope

Nateglinide (NAT) is an oral antihyperglycemic agent used for the treatment of noninsulin-dependent diabetes mellitus. We evaluated the NAT stability under various forced degradation tests (acidic, basic) and predicted the degradation mechanism of the NAT molecule in the gaseous phase and aqueous media. A first-order derivative spectrophotometric method was used for the identification of NAT and the products of its degradation. NAT appeared to be stable in acidic but not in basic media. A probable reaction path of the NAT molecule with OH radicals was analyzed. The optimized geometry was calculated with Gauss View 5. Subsequently, the lowest energy status was determined through geometric optimization using Gaussian 09 software. Aiming to determine the intermediates in the photocatalytic degradation mechanism, the geometric optimization of the molecule was realized using the density functional theory method. The activation energy for the probable reaction path was calculated, and their most stable state from the thermodynamic perspective was determined for the gaseous phase and aqueous media. The predicted mechanism was confirmed by comparison with the experimental results on simple structures reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Merck Index, 13th ed., Nateglinide, Merck, Inc., Whitehouse Station (2001).

  2. C. J. Dunn and D. Faulds, Drugs, 60, 607–617 (2000).

    Article  Google Scholar 

  3. WHO, https://www.who.int/health-topics/diabetes, accessed 07.02.2020.

  4. A. B. Thomas, S. D. Patil, R. K. Nanda, L. P. Kothapalli, S. S. Bhosle, and A. D. Deshpande, Saudi Pharm. J., 19, No. 4, 221–231 (2011).

    Article  Google Scholar 

  5. A. Rastogi, K. Jha Kishore, V. Verma, J. Singh, and J. Sagar, Pharma Res., 1, 169 (2009).

    Google Scholar 

  6. M. Sireesha, R. S. Chandan, B. M. Gurupadayya, and A. Shravya, Pharma Chem., 3, 497–506 (2011).

    Google Scholar 

  7. D. E. Han, Y. Zheng, N. Li, D. Zhao, G. Zhang, H. Yan, L. Zhang, W. Sun, Y. N. Wu, Y. Lu, and X. Chen, Chromatographia, 71, 299–304 (2010).

    Article  Google Scholar 

  8. C. B. Ojeda and F. S. Rojas, Anal. Chim. Acta, 518, 1–24 (2004).

    Article  Google Scholar 

  9. F. S. Rojas, C. B. Ojeda, and J. M. Pavon, Talanta, 35, 753–761 (1988).

    Article  Google Scholar 

  10. J. Karpińska, Talanta, 64, 801–822 (2004).

    Article  Google Scholar 

  11. A. A. Shirkhedkar, H. C. Bhirud, and J. S. Surana, Pak. J. Pharm. Sci., 22, 27–29 (2009).

    Google Scholar 

  12. C. Jenee, S. Purvi, P. Margi, P. Kalpana, and G. Tejal, J. Taibah Univ. Sci., 11, 729–740 (2017).

    Article  Google Scholar 

  13. A. S. Dimal, J. S. Dixita, N. D. Chirag, K. C. Usman, and K. B. Kashyap, Arab. J. Chem., 10, 105–108 (2017).

    Article  Google Scholar 

  14. International Conference on Harmonization. ICH. Validation of analytical procedures: text and methodology Q2 R1 (2005).

  15. International Conference on Harmonization, ICH. Stability testing of new drug substances and products Q1A R2 (2003).

  16. V. G. Buxton, L. C. Greenstock, P. W. Helman, and B. A. Ross, J. Phys. Chem., 17, 513–886 (1988).

    Google Scholar 

  17. M. Anbar and P. Neta, Int. J. Appl. Radiat. Isot., 18, 495–523 (1965).

    Google Scholar 

  18. B. Halliwell, M. Grootveld, and J. M. C. Gutteridge, Methods Biochem. Anal., 33, 59–90 (2006).

    Article  Google Scholar 

  19. A. Hatipoglu, D. Vione, Y. Yalcin, C. Minero, and Z. Cinar, J. Photochem. Photobiol. A: Chem., 215, 59–68 (2010).

    Article  Google Scholar 

  20. P. W. Atkins, Physical Chemistry, 6th ed., Oxford University Press, New York (1998).

  21. K. K. Mierzejewska, J. Trylska, and J. Sadlej, J. Mol. Model., 18, 2727–2740 (2012).

    Article  Google Scholar 

  22. Gaussian 09, Revision B.04, Gaussian, Inc., Pittsburgh, PA (2009).

  23. D. B. Pathare, A. S. Jadhav, and M. S. Shingare, Drug Dev. Ind. Pharm., 33, No. 5, 551–557 (2007).

    Article  Google Scholar 

  24. Asha Byju Thomas, Shrikrushn, Digambar Patil, Rabindra Kumar Nanda, Lata Prasad Kothapalli, Shital Shridhar Bhosle, and Avinash Devidas Deshpande, Saudi Pharm. J., 19, No. 4, 221–231 (2011).

  25. K. Basavaiah and N. Rajendraprasad, Austin J. Anal. Pharm. Chem., 5, No. 1, 1096 (2018).

    Google Scholar 

  26. A. Karasakal and E. Ozdemir, J. Res. Pharm., 23, No. 3, 457–464 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karasakal.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 6, pp. 914–919, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasakal, A., Gürkan, Y.Y. Forced Degradation Studies of Nateglinide by the First-Order Derivative Spectrophotometric Method and the Density Functional Theory of the Nateglinide Molecule. J Appl Spectrosc 88, 1183–1188 (2022). https://doi.org/10.1007/s10812-022-01297-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01297-6

Keywords

Navigation