Skip to main content
Log in

Silicon Plasma Heating in Air under Combined Bichromatic Laser Radiation at Wavelengths of 355 and 532 nm

  • Published:
Journal of Applied Spectroscopy Aims and scope

The formation and heating of laser plasma when silicon is irradiated in ambient air by pulsed laser radiation with wavelengths of 355 and 532 nm at radiation power density up to 5 GW/cm2 has been experimentally investigated. An increased efficiency of the formation and heating of ablation plasma is observed when nanosecond pulses with a wavelength of 355 nm are leading in the bichromatic irradiation of silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Effect of High-Power Radiation on Metals [in Russian], A. M. Bonch-Bruevich and M. A. El′yashevich (Eds.), Nauka, Moscow (1970).

  2. W. Dewley, Laser Processing and Analysis of Materials [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  3. A. M. Prokhorov, V. I. Konov, I. Ursu, and I. N. Mihailescu, Interaction of Laser Radiation with Metals [Russian translation], Nauka, Moscow (1988).

    Google Scholar 

  4. S. I. Anisimov and B. S. Luk′yanchuk, Phys. Usp., 45, No. 3, 293–324 (2002).

    Article  ADS  Google Scholar 

  5. L. Ya. Min′ko, N. Chumakou, and N. A. Bosak, Kvantovaya Élektron., 20, No. 11, 1389–1392 (1990); doi: https://doi.org/10.1070/QE1990v020n11ABEH007540.

    Article  Google Scholar 

  6. R. Sattmann, V. Sturm, and R. Noll, J. Phys. D: Appl. Phys., 28, 2181–2187 (1995).

    Article  ADS  Google Scholar 

  7. S. G. Gornyi, A. M. Grigor′ev, M. I. Patrov, V. D. Solov'ev, and G. A. Turichin, Kvantovaya Élektron., 32, No. 10, 929–932 (2002) doi: https://doi.org/10.1070/QE2002v032n10ABEH002320.

    Article  Google Scholar 

  8. S. M. Klimentov, P. A. Pivovarov, V. I. Konov, D. Breitling, and F. Dausinger, Kvantovaya Élektron., 34, No. 6, 537–540 (2004); doi: https://doi.org/10.1070/QE2004v034n06ABEH002769.

    Article  Google Scholar 

  9. S. M. Pershin, Kvantovaya Élektron., 39, No. 1, 63–67 (2009); doi: https://doi.org/10.1070/QE2009v039n01ABEH013720.

    Article  Google Scholar 

  10. L. Ya. Min′ko, A. N. Chumakov, and G. I. Bakanovich, J. Appl. Spectrosc., 61, 805–811 (1994); doi: https://doi.org/10.1007/BF02606441.

    Article  ADS  Google Scholar 

  11. M. L. Petukh, V. A. Rozantzev, A. D. Shirokanov, and A. A. Yankovskii, J. Appl. Spectrosc., 67, 1097–1101 (2000).

    Article  Google Scholar 

  12. Reinhard Noll, Laser-Induced Breakdown Spectroscopy. Fundamentals and Applications, Springer, Heidelberg, Berlin (2012), pp. 83–95.

    Book  Google Scholar 

  13. A. N. Chumakov, V. B. Avramenko, and N. A. Bosak, J. Appl. Spectrosc., 79, 261–268 (2012).

    Article  ADS  Google Scholar 

  14. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Appl. Phys. B, 80, 559–568 (2005).

    Article  ADS  Google Scholar 

  15. E. A. Ershov-Pavlov, K. Yu. Katsalap, K. L. Stepanov, and Yu. A. Stankevich, Spectrochim. Acta B, 63, 1024–1037 (2008).

    Article  ADS  Google Scholar 

  16. A. A. I. Khalil, Laser Phys., 20, No. 1, 238–244 (2010).

    Article  ADS  Google Scholar 

  17. V. Piñon and D. Anglos, Spectrochim. Acta B, 64, 950–960 (2009).

    Article  ADS  Google Scholar 

  18. S. Amoruso, R. Bruzzese, X. Wang, G. O′Connel, and J. G. Lunney, J. Appl. Phys., 108, 113302 (2010).

  19. D. Kremers and L. Radziemski, Laser-Spark Spectroscopy, Tekhnosfera, Moscow (2009), pp. 265–267.

    Google Scholar 

  20. A. N. Chumakov, N. A. Bosak, and V. L. Rudakov, Materials of the Second Belarusian Space Congress, October 25–27, 2005, Minsk, OIPI NAS of Belarus (2005), pp. 45–49.

  21. A. N. Chumakov, N. A. Bosak, and A. V. Panina, J. Appl. Spectrosc., 84, No. 4, 620–626 (2017).

    Article  ADS  Google Scholar 

  22. A. N. Chumakov, N. A. Bosak, and A. A. Ivanov, Zh. Prikl. Spektr., 86, No. 5, 836–842 (2019).

    Google Scholar 

  23. A. N. Chumakov, N. A. Bosak, and P. I. Verenich, High Temp. Mater. Proc., 18, No. 4, 269–272 (2014).

    Article  Google Scholar 

  24. V. V. Lychkovskii and A. N. Chumakov, Mater. Int. School-Conf. of Young Scientists and Specialists "Contemporary Problems of Physics," November 4–6, 2020, Minsk, Institute of Physics of the National Academy of Sciences of Belarus (2020), pp. 37–38.

  25. A. N. Chumakov, V. V. Lychkovskii, I. S. Nikonchuk, and A. S. Matsukovich, Zh. Tekh. Fiz., 92, No. 1, 36–44 (2022).

    Google Scholar 

  26. I. S. Nikonchuk and A. N. Chumakov, J. Phys.: Conf. Ser., 666, 012021 (2016); doi: https://doi.org/10.1088/1742-6596/666/1/012021.

    Article  Google Scholar 

  27. M. Panzner, J. Kasper, H. Wust, U. Klotzbach, and E. Beyer, Proc. SPIE, 4637, 496–504 (2002); doi: https://doi.org/10.1117/12.470659.

    Article  ADS  Google Scholar 

  28. G. Grim, Plasma Spectroscopy [in Russian], Atomizdat, Moscow (1969), pp. 224–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Chumakov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 6, pp. 900–906, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, A.N., Lychkoskyi, V.V. Silicon Plasma Heating in Air under Combined Bichromatic Laser Radiation at Wavelengths of 355 and 532 nm. J Appl Spectrosc 88, 1169–1175 (2022). https://doi.org/10.1007/s10812-022-01295-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01295-8

Keywords

Navigation