Skip to main content
Log in

Application of Pulse–Amplitude Modulated Fluorometry to Estimate the Effect of Volatile Organic Compounds and Benzo[a]Pyrene on the Functional Activity of Photosystem II in Leaves of Reed Fescue Festuca arundinacea Schreb.

  • Published:
Journal of Applied Spectroscopy Aims and scope

The mechanisms of action of toxic organic compounds (OC) (pentane, hexane, benzene, o-xylene, butyl acetate, and benzopyrene) on the reed fescue Festuca arundinacea Schreb., which is a common plant in urban environments, were studied using pulse–amplitude modulated (PAM) fluorometry, which allowed the photochemical activity of photosystem II (PS II) to be evaluated from the parameters of the kinetic curve of chlorophyll a (Chla) fluorescence induction in vivo. A dose- and time-dependent reduction in the content of hydrophobic membrane-bound chlorophyll pigments was found along with simultaneous accumulation in the leaves of chlorophyllide (Chlde), a phytol-free product of chlorophyll degradation. It was shown that the effective quantum yield [Y(II)] of PS II photochemical reactions decreased mainly at high doses of toxic compounds while the level of photochemical fluorescence quenching (qP) did not change significantly and the coefficient of nonphotochemical quenching (qN) increased significantly to different degrees depending on the type of toxicant and the time of its exposure. A high negative correlation was observed between changes in qN, which characterized the thermal dissipation of absorbed energy, and the content of membrane-bound phytol chlorophyll pigments and carotenoids. On the other hand, changes in qN correlated positively with the content of Chlde formed during treatment with OC. The demand for thermal dissipation of absorbed energy resulting from the action of OC was proportional to the degree of destruction of the chloroplast pigment apparatus. This was confirmed by the positive correlation between qN and the content of Chlde, which possessed a photodynamic effect. Thus, parameter qN can serve as a reliable test for the damaging effect of toxic techogenic OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Kabashnikova, Photosynthetic Apparatus and the Potential of Cereal Productivity [in Russian], Bel. Navuka, Minsk (2011), pp. 250–300.

  2. S. A. Sergeichik, Ekol. Vestn., No. 1, 16–24 (2012).

  3. A. V. Lankin, Mechanisms of Toxic Action of Polycyclic Aromatic Hydrocarbons on the Photosynthetic Apparatus [in Russian], Inst. Fiziol. Rast. Ross. Akad. Nauk, Moscow (2016), pp. 10–20.

  4. V. S. Lysenko, T. V. Varduni, V. G. Soier, and V. P. Krasnov, Fundam. Issled., No. 4, 112–120 (2013).

  5. M. Yu. Alieva, A. T. Mammaev, M. Kh.-M. Magomedova, and E. V. Pinyaskina, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, No. 1, 701–704 (2014).

  6. D. I. Orekhov and Yu. P. Kozlov, Vestn. Ross. Univ. Druzhby Narodov (RUDN), No. 4, 23–28 (2010).

  7. D. Yu. Korneev, Informational Capabilities of the Chlorophyll Fluorescence Induction Method [in Russian], Al′terpress, Kiev (2002), pp. 150–180.

  8. H. M. Kalaji, W. Bąba, K. Gediga, V. Goltsev, I. A. Samborska, M. D. Cetner, S. Dimitrova, U. Piszcz, K. Bielecki, K. Karmowska, K. Dankov, and A. Kompala-Baba, Photosynth. Res., 136, 329–343 (2018).

    Article  Google Scholar 

  9. S. V. Wittenberghe, L. Alonso, J. Verrelst, I. Hermans, J. Delegido, F. Veroustraete, R. Valcke, J. Moreno, and R. Samson, Environ. Pollut., 173, 29–37 (2013).

    Article  Google Scholar 

  10. D. Dewez, O. Didur, J. Vincent-Heroux, and R. Popovic, Environ. Pollut., 151, 93–100 (2008).

    Article  Google Scholar 

  11. A. J. Clark, W. Landolt, J. B. Bucher, and R. J. Strasser, Environ. Pollut., 109, 501–507 (2000).

    Article  Google Scholar 

  12. S. R. Boese, D. C. MacLean, and D. El-Mogazi, Environ. Pollut., 89, 203–208 (1995).

    Article  Google Scholar 

  13. Y. Chae, D. Kim, and Y.-J. An, Environ. Pollut., 219, 359–367 (2016).

    Article  Google Scholar 

  14. K.-J. Appenroth, J. Stockel, A. Srivastava, and R. J. Strasser, Environ. Pollut., 115, 49–64 (2001).

    Article  Google Scholar 

  15. A. T. Ruley, N. C. Sharma, S. V. Sahi, S. R. Singh, and K. S. Sajwan, Environ. Pollut., 144, 11–18 (2006).

    Article  Google Scholar 

  16. I. Oguntimehin, N. Nakatani, and H. Sakugawa, Environ. Pollut., 154, 264–271 (2008).

    Article  Google Scholar 

  17. J. N. Cape, I. D. Leith, J. Binnie, J. Content, M. Donkin, M. Skewes, D. N. Price, A. R. Brown, and A. D. Sharpe, Environ. Pollut., 124, 341–353 (2003).

    Article  Google Scholar 

  18. Y. Liang, H. Chen, M.-J. Tang, P.-F. Yang, and S.-H. Shen, Physiol. Plantarum, 131, No. 3, 508–517 (2007).

    Article  Google Scholar 

  19. O. Herde, H. Pena-Cortes, H. Fuss, L. Willmitzer, and J. Fisahn, Physiol. Plantarum, 105, No. 1, 179–184 (1999).

    Article  Google Scholar 

  20. B. C. Tripathy and R. Oelmuller, Plant Signaling Behav., 7, No. 12, 1621–1633 (2012).

    Article  Google Scholar 

  21. A. A. Sivash and E. K. Zolotareva, Khar′kiv. Nats. Agrar. Univ., Vip. 3, No. 30, 6–17 (2013).

  22. Decree No. 113 of the Ministry of Health of the Republic of Belarus "On approval and enactment of regulations on maximum permissible concentrations of atmospheric pollutants and approximate safe action levels of atmospheric pollutants in population centers and popular vacation spots" of Nov. 8, 2016.

  23. G. N. Krause and E. Weis, Plant Physiol. Plant Mol. Biol., 42, 313–349 (1991).

    Article  Google Scholar 

  24. K. Rochacek and M. Bartak, Photosynthetica, 37, 339–363 (1999).

    Google Scholar 

  25. S. Harpaz-Saad, T. Azoulay, T. Arazi, E. Ben-Yaakov, A. Mett, and Y. M. Shiboleth, Plant Cell, 19, 1007–1022 (2007).

    Article  Google Scholar 

  26. D. Rydzynski, A. I. Piotrowicz-Cieslak, H. Grajek, and D. J. Michalczyk, Int. J. Environ. Sci. Technol., 16, 6301–6314 (2019).

    Article  Google Scholar 

  27. E. G. Tyul'kova, G. E. Savchenko, and L. F. Kabashnikova, Izv. Ross. Akad. Nauk, Ser. Biol. (in print), Id: IZVBIO2110008TYULKOVA; https://sciencejournals.ru/journal/izvbio/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Tulkova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 5, pp. 768–777, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulkova, E.G., Savchenko, G.E. & Kabashnikova, L.F. Application of Pulse–Amplitude Modulated Fluorometry to Estimate the Effect of Volatile Organic Compounds and Benzo[a]Pyrene on the Functional Activity of Photosystem II in Leaves of Reed Fescue Festuca arundinacea Schreb.. J Appl Spectrosc 88, 999–1007 (2021). https://doi.org/10.1007/s10812-021-01271-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01271-8

Keywords

Navigation