Skip to main content
Log in

Plasmonic Structures Based on Hydroxyapatite/Silver Nanocomposite for Surface-Enhanced Raman Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

A hydroxyapatite-silver nanocomposite (HA)Ag in which one silver nanoparticle is bound to each HA particle was synthesized with glucose as reducing agent,. The structural and optical properties of the nanocomposite were investigated. The procedure for the formation of plasmonic films of (HA)Ag on glass substrates surface was optimized. The role of modification of the glass surface with polyethyleneimine in the formation of homogeneous plasmonic coatings was demonstrated. The surface-enhanced Raman spectra (SERS) of the cationic porphyrin CuTMpyP4 adsorbed on the surface of the (HA)Ag fi lm were measured. The detection limit of CuTMpyP4 was established as 10 –12 M, which is comparable with the sensitivity of the well-known solid-state SERS-active materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Moskovits, Rev. Mod. Phys., 57, 783–826 (1985).

    Article  ADS  Google Scholar 

  2. W. E. Smith, Chem. Soc. Rev., 37, 955 (2008).

    Article  Google Scholar 

  3. Chuanhui Huang, Ailin Li, Xiangyu Chen, and Tie Wang, Small, 2004802, 1–17 (2020).

    Google Scholar 

  4. R. Aroca, Surface-Enhanced Vibrational Spectroscopy, J. Wiley, Chichester (2006), p. 260.

    Book  Google Scholar 

  5. K. Kim and K. S. Shin, Anal. Sci., 27, 775–783 (2011).

    Article  Google Scholar 

  6. V. Shvalya, G. Filipic, J. Zavasnik, I. Abdulhalim, and U. Cvelbar, Appl. Phys. Rev., 7, 031307(1–35) (2020).

  7. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, Biosensors, 9, 57 (1–100) (2019).

    Google Scholar 

  8. Cheng Zong, Mengxi Xu, Li-Jia Xu, Ting Wei, Xin Ma, Xiao-Shan Zheng, Ren Hu, and Bin Ren, Chem. Rev., 118, 4946–4980 (2018).

  9. M. M. Harper, K. S. McKeating, and K. Faulds, Phys. Chem. Chem. Phys., 15, 5312–5328 (2013).

    Article  Google Scholar 

  10. T. Vo-Dinh, P. Kasili, and M. Wabuyele, Nanomedicine: Nanotechnology, Biology, and Medicine, 2, 22–30 (2006).

    Article  Google Scholar 

  11. J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, Nat. Mater., 18, 668–678 (2019).

    Article  ADS  Google Scholar 

  12. R. C. Maher, M. Dalley, E. C. Le Ru, L. F. Cohen, P. G. Etchegoin, H. Hartigan, R. J. C. Brown, and M. J. T. Milton, J. Chem. Phys., 121, 8901–8910 (2004).

    Google Scholar 

  13. M. A. De Jesus, K. S. Giesfeldt, and M. J. Sepaniak, Appl. Spectrosc., 57, 428–438 (2003).

    Article  ADS  Google Scholar 

  14. K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, Anal. Chem., 79, 8870–8882 (2007).

    Article  Google Scholar 

  15. Y. Fang, N. H. Seong, and D. D. Dlott, Science, 321, 388–392 (2008).

    Article  ADS  Google Scholar 

  16. S. N. Terekhov, A. Yu. Panarin, A. V. Abakshonok, A. N. Eryomin, A. S. Yegorov, and P. Mojzes, Reviews and Short Notes to Nanomeeting, 2015 "Physics, Chemistry and Applications of Nanostructures," World Scientifi c Publishing Co. Pte. Ltd., Singapore (2015), pp. 488–491.

    Google Scholar 

  17. Lei Zhang, Yongquan Luo, Yameng Zhao, Boxin Guan, Lingyi Zhang, Bohao Yu, and Weibing Zhang, New J. Chem., 42, 17950–17957 (2018).

  18. B. V. Parakhonskiy, Yu. I. Svenskaya, A. М. Yashchenok, H. A. Fattah, O. A. Inozemtseva, F. Tessarolo, R. Antolini, and D. A. Gorin, Coll. Surf. B: Biointerfaces, 118, 243–248 (2014).

    Article  Google Scholar 

  19. A. N. Eremin, A. V. Abakshonok, V. E. Agabekov, and M. V. Makarenko, Vestsi. NAN Belarusi. Ser. Khim. Navuk, No. 3, 60–68 (2013).

    Google Scholar 

  20. A. V. Abakshonok, A. N. Eryomin, and V. E. Agabekov, Adv. Mater. Res., 1085, 113–118 (2015).

    Article  Google Scholar 

  21. D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig, Analyst., 139, 4855–4861 (2014).

    Article  ADS  Google Scholar 

  22. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature, 389, 827–829 (1997).

    Article  ADS  Google Scholar 

  23. H. Hu and R. G. Larson, J. Phys. Chem. B, 106, 1334–1344 (2002).

    Article  Google Scholar 

  24. P. J. Yunker, T. Still, M. A. Lohr, and A. G. Yodh, Nature, 476, 308–311 (2011).

    Article  ADS  Google Scholar 

  25. L. Cui, J. Zhang, X. Zhang, L. Huang, Z. Wang, Y. Li, H. Gao, S. Zhu, T. Wang, and B. Yang, ACS Appl. Mater. Interfaces, 4, 2775–2780 (2012).

    Article  Google Scholar 

  26. V. Shakila and K. Pandian, J. Solid State Electrochem., 11, 296–302 (2007).

    Article  Google Scholar 

  27. P. A. Mosser-Boss, Nanomaterials, 7, 142 (1–30) (2017).

  28. Siqi Gao, Mengmeng Zheng, Yamin Lin, Kecan Lin, Jinshu Zeng, Shusen Xie, Yun Yu, and Juqiang Lin, J. Biophoton., 13, e202000087, doi: 10.1002/jbio.202000087 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Terekhov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 5, pp. 748–754, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panarin, A.Y., Abakshonok, A.V., Mojzes, P. et al. Plasmonic Structures Based on Hydroxyapatite/Silver Nanocomposite for Surface-Enhanced Raman Spectroscopy. J Appl Spectrosc 88, 980–986 (2021). https://doi.org/10.1007/s10812-021-01269-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01269-2

Keywords

Navigation