Skip to main content
Log in

Feasibility of Using Luminescence Spectroscopy for Analyzing Phthalates Upon Their Conversion into Fluorescein

  • Published:
Journal of Applied Spectroscopy Aims and scope

The feasibility of using the conversion of phthalates to fluorescein in analytical luminescence spectroscopy for the detection of phthalates is considered. Phthalates are converted to fluorescein by their prior hydrolysis to give phthalic acid followed by dehydration of this acid to give phthalic anhydride and the reaction of the latter with resorcinol. The formation of luminescent byproducts in the autocondensation of resorcinol molecules presumably with the products of their own oxidation and decomposition was detected. The luminescence spectrum of the by product mixture obtained upon the transformation of resorcinol overlaps the spectrum of fluorescein and the relative quantum yield of the mixture luminescence was 25%. This behavior hinders the use of this reaction for analytical purposes since special care is required for sample preparation and selection of the reaction conditions in order to minimize or, hopefully, eliminate the formation of such luminescent by products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Navarro, M. P. Perrino, M. G. Tardajos, and H. Reinecke, Macromolecules, 43, No. 5, 2377–2381 (2010).

    Article  ADS  Google Scholar 

  2. H. J. Koo and B. M. Lee, Toxicol. Environ. Health, 67, No. 24, 1901–1914 (2004).

    Article  Google Scholar 

  3. R. Kavlock, D. Barr, K. Boekelheide, W. Breslin, P. Breysse, R. Chapin, K. Gaido, E. Hodgson, M. Marcus, K. Shea, and P. Williams, Reproductive Toxicol., 22, No. 3, 291–399 (2006).

    Article  Google Scholar 

  4. P. Ventrice, Environ. Toxicol. Pharmacol., 36, No. 1, 88–96 (2013).

    Article  Google Scholar 

  5. G. Lottrup, A. M. Andersson, H. Leffers, G. K. Mortensen, J. Toppari, N. E. Skakkebæk, and K. M. Main, Int. J. Andrology, 29, No. 1, 172–180 (2006).

    Article  Google Scholar 

  6. L. Na, L. Te, Z. Liting, H. Jun, and Y. Lin, Environ. Toxicol. Pharmacol., 34, No. 3, 869–875 (2012).

    Article  Google Scholar 

  7. T. Lovekamp-Swan and B. J. Davis, Environ. Health Perspectives, 111, No. 2, 139–145 (2003).

    Article  Google Scholar 

  8. J. J. Jaakkola and T. L. Knight, Environ. Health Perspectives, 116, No. 7, 845–853 (2008).

    Article  Google Scholar 

  9. C. Bornehag and E. Nanberg, Int. J. Andrology, 33, No. 2, 333–345 (2010).

    Article  Google Scholar 

  10. S. Selenskas, M. J. Teta, and J. N. Vitale, J. Industr. Med., 28, No. 3, 385–398 (1995).

    Article  Google Scholar 

  11. L. López-Carrillo, R. U. Hernández-Ramirez, A. M. Calafat, M. Torres-Sánchez, M. Galván-Portillo, L. L. Needham, R. Ruiz-Ramos, and M. E. Cebrián, Environ. Health Perspectives, 118, No. 4, 539–544 (2009).

    Article  Google Scholar 

  12. K. B. Nelson, Pediatrics, 81, No. 5, 761–766 (1991).

  13. C. Testa, ASN Neuro, 4, No. 4, 223–229 (2012).

    Article  Google Scholar 

  14. REACH, Plasticizers Information Center, https://www.plasticisers.org/regulation/reach#/

  15. https://www.sgs.com/en/news/2019/04/accessingthemarketeuropeanunionphthalateregulations .

  16. Restriction of Hazardous Substances in Electrical and Electronic Equipment (RoHS), European Commission, https://ec.europa.eu/environment/topics/wasteandrecycling/rohsdirective_en.

  17. M. K. Stanley, K. A. Robillard, and C. A. Staples, The Handbook of Environmental Chemistry: Phthalate Esters, Springer Verlag, Berlin–Heidelberg, Vol. 3, Pt Q (2003), pp. 1215–1219.

  18. Enhanced Sensitivity to Detect Phthalates by FTIR Analysis [Electronic resource], Spectroscopy, https://www.spectroscopyonline.com/view/enhancedsensitivitydetectphthalatesftiranalysis.

  19. Y. Hiroyuki and F. Shigehiko, Analyt. Sci., 35, 1215–1219 (2019).

    Article  Google Scholar 

  20. Determination of Certain Substances in Electrotechnical Products. Part 8: Phthalates in Polymers by Gas ChromatographyMass Spectrometry Using a Pyrolyzer/Thermal Desorption Accessory (Py/TDGCMS): IEC 623218. International Electrochemical Commission (2017), pp. 14–15.

  21. A. Banerjee and P. K. Sanyal, Indian J. Technol., 15, No. 12, 540 (1977).

    Google Scholar 

  22. C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, Nature Protocols, 8, No. 8, 1535–1550 (2013).

  23. R. E. Flikkema, Master's Thesis: Some Condensation Products of Resorcinol and their Relation to the Phenomenon of Fluorescence, University of Massachusetts, Amherst (1923), pp. 13–16.

    Google Scholar 

  24. M. Kasha, H. R. Rawls, and M. A. El-Bayoumi, Pure Appl. Chem., 11, 371–392 (1965).

    Article  Google Scholar 

  25. U. Rösch, S. Yao, R. Wortmann, and F. Würthner, Angew. Chem. Int. Ed., 45, No. 42, 7026–7030 (2006).

    Article  Google Scholar 

  26. Y. Deng, W. Yuan, Z. Jia, and G. Liu, J. Phys. Chem. B, 118, No. 49, 14536–14545 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Kulakovich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 5, pp. 724–730, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakovich, O.S., Ramanenka, A.A., Lukyanenko, E.A. et al. Feasibility of Using Luminescence Spectroscopy for Analyzing Phthalates Upon Their Conversion into Fluorescein. J Appl Spectrosc 88, 958–964 (2021). https://doi.org/10.1007/s10812-021-01265-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01265-6

Keywords

Navigation