Skip to main content
Log in

Sensitization of Yb(III), ER(III), and Nd(III) Luminescence by Ligands Based on 3-Formyl-4-Hydroxybenzoic Acid and Transition Metals

  • Published:
Journal of Applied Spectroscopy Aims and scope

The syntheses of 3-formyl-4-hydroxybenzoic acid-derived ligands from ethylenediamine, diethylenetriamine, and triethylenetetramine are described. These ligands can further form hetero-binuclear complexes with transition metal ions (M2+ = Zn2+, Fe2+, Ni2+, Mn2+) and lanthanide ions (Ln3+ = Nd3+, Er3+, Yb3+). The spectroscopic properties were studied using near-infrared (NIR) luminescence emission spectra, fluorescence lifetime, and quantum yield. These hetero-nuclear complexes exhibited the characteristic lanthanide near-infrared luminescence in the solid state through energy-transfer from the chromophore to lanthanide ions. The d-block emission bands of transition metal ions in the solid state overlapped with f–f absorption bands of Yb(III), Er(III), or Nd(III), sensitizing the near-infrared luminescence of these hetero-binuclear complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cui, Y. Yue, and G. Qian, Chem. Rev., 112, No. 2, 1126–1162 (2012).

    Article  Google Scholar 

  2. T. L. Mako, J. M. Racicot, and M. Levine, Chem. Rev., 119, No. 1, 322–477 (2019).

    Article  Google Scholar 

  3. K. Y. Zhang, Q. Yu, H. J. Wei, S. J. Liu, Q. Zhao, and W. Huang, Chem. Rev., 118, No. 4, 1770–1839 (2018).

    Article  Google Scholar 

  4. H. Terraschke and C. Wickleder, Chem. Rev., 115, No. 20, 11352–11378 (2015).

    Article  Google Scholar 

  5. M. C. Heffern, L. M. Matosziuk, and T. J. Meade, Chem. Rev., 114, No. 8, 4496–4539 (2014).

    Article  Google Scholar 

  6. L. J. Li, L. Wondraczek, L. H. Li, Y. Zhang, Y. Zhu, M. Y. Peng, and C. B. Mao, ACS Appl. Mater. Inter faces, 10, No. 17, 14509–14516 (2018).

    Article  Google Scholar 

  7. Q. Zhan, J. Qian, and H. Liang, ACS Nano, 5, No. 5, 3744–3757 (2011).

    Article  Google Scholar 

  8. X. Li, R. Wang, and F. Zhang, Sci. Rep., 3, 3536–3543 (2013).

    Article  Google Scholar 

  9. S. Faulkner and J. I. Matthews, Application of Coordination Complexes in Comprehensive Coordination Chemistry, 2nd ed., Vol. 9, Ed. M. D. Ward, Elsevier, Amsterdam, The Netherlands (2003).

  10. L. J. Xu, G. T. Xu, and Z. N. Chen, Coord. Chem. Rev., 273274, 47–62 (2014).

  11. X. Qin, X. W. Liu, W. Huang, M. Bettinelli, and X. G. Liu, Chem. Rev., 117, No. 5, 4488–4527 (2017).

    Article  Google Scholar 

  12. X. Feng, Y. Q. Feng, J. J. Chen, S. W. Ng, L. Y. Wang, and J. Z. Guo, Dalton Trans., 44, 804–816 (2015).

    Article  Google Scholar 

  13. M. Andruh, Dalton Trans., 44, 16633–16653 (2015).

    Article  Google Scholar 

  14. K. Liu, W. Shi, and P. Cheng, Coord. Chem. Rev., 289290, 74–122 (2015).

  15. A. Thevenon, J. A. Garden, and A. J. P. White, Inorg. Chem., 54, No. 24, 11906–11915 (2015).

    Article  Google Scholar 

  16. Y. J. Dong, J. C. Ma, L. C. Zhu, et al., Coord. Chem. Rev, 70, 103–115 (2017).

    Article  Google Scholar 

  17. M. Komiyama and H. Hirai, Macromol. Chem. Rapid Commun., 2, 759–760 (1981).

    Article  Google Scholar 

  18. J. R. Buchwald, S. Kal, M. R. Civic, I. M. DeJoode, A. S. Filatov, and P. H. Dinolfo, J. Coord. Chem., 69, Nos. 11–13, 1695–1708 (2016).

    Article  Google Scholar 

  19. M. Y. Khuhawar et al., Eur. Polym. J., 40, No. 4, 805–809 (2004).

    Article  Google Scholar 

  20. S. P. Wong and Y. Z. Xu, Fourier Transform Infrared Spectrometer, 3rd ed., Chemical Industry Press, Beijing, China (2016).

    Google Scholar 

  21. K. Liu, X. Liu, and Q. Zeng, ACS nano, 6, No. 5, 4054–4062 (2012).

    Article  Google Scholar 

  22. B. W. Fei, P. F. Yan, T. Q. Liu, F. Yang, and G. M. Li, J. Lumin., 177, 380–386 (2016).

    Article  Google Scholar 

  23. W. X. Li, Y. S. Zheng, and X. J. Sun, J. Lumin., 130, 1455–1462 (2010).

    Article  Google Scholar 

  24. Z. Zhang, W. X. Feng, P. Y. Su, H. Liu, Y. Zhang, Z. Wang, T. Z. Miao, X. Q. Lü, D. D. Fan, W. K. Wong, and R. A. Jones, Spectrochim. Acta A, 116, 102–110 (2013).

    Article  ADS  Google Scholar 

  25. X. Zou, P. Yan, and J. Zhang, Dalton Trans., 42, 13190–13199 (2013).

    Article  Google Scholar 

  26. W. Feng, Y. Zhang, X. Q. Lü, Y. N. Hui, G. X. Shi, D. Zou, J. R. Song, D. D. Fan, W. K. Wong, and R. A. Jones, CrystEngComm., 14, 3456–3463 (2012).

    Article  Google Scholar 

  27. X. P. Yang, D. Schipper, R. A. Jones, L. A. Lytwak, B. J. Holliday, and S. M. Huang, J. Am. Chem. Soc., 135, No. 23, 8468–8471 (2013).

    Article  Google Scholar 

  28. Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, Angew. Chem., Int. Ed., 51, No. 12, 1437–1442 (2012).

    Article  Google Scholar 

  29. L. Liu, Z. Zhang, W. X. Feng,C. Yu, X. Q. Lv, W. L. Wong, and R. A. Jones, Inorg. Chem. Comm., 49, 124–126 (2014).

    Article  Google Scholar 

  30. S. I. Klink, L. Grave, D. N. Reinhoudt, and F. G. J. M. v. Veggel, J. Phys. Chem. A, 104, 5457–5468 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Dang.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 5, pp. 711–716, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, F.F., Zhang, Q., Zhu, C. et al. Sensitization of Yb(III), ER(III), and Nd(III) Luminescence by Ligands Based on 3-Formyl-4-Hydroxybenzoic Acid and Transition Metals. J Appl Spectrosc 88, 945–950 (2021). https://doi.org/10.1007/s10812-021-01263-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01263-8

Keywords

Navigation