Skip to main content
Log in

Buckwheat Identification by Combined UV-VIS-NIR Spectroscopy and Multivariate Analysis

  • Published:
Journal of Applied Spectroscopy Aims and scope

A Correction to this article was published on 17 January 2022

This article has been updated

The application of UV-VIS-NIR spectroscopy combined with multivariate analysis for the classification and identification of buckwheat groats was analyzed. Samples of buckwheat groats differing in harvest time, kernel size, roasting method, and storage time were divided into groups using a cluster analysis method. The principal components method revealed absorption bands in UV-VIS-NIR spectra corresponding to functional groups of the composition components and contributing most to differentiation of the samples into buckwheat quality categories. Discriminant analysis confirmed a hypothesis on dividing the buckwheat samples into groups and formulating a classification function to identify and sort buckwheat groats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. P. Qin, Q. Wang, F. Shan, Z. Hou, and G. Ren, Int. J. Food Sci. Technol., 45, 951–958 (2010).

    Article  Google Scholar 

  2. A. Ahmed, N. Khalid, A. Ahmad, N. A. Abbasi, M. S. Z. Latif, and M. A. Randawa, J. Agric. Sci., 152, No. 3, 349–369 (2014).

    Article  Google Scholar 

  3. H. Yilmaz, N. Ayhan, and C. Meric, Curr. Nutr. Food Sci., 16, 29–34 (2020).

    Article  Google Scholar 

  4. Scientific concepts of functional foods in Europe. Consensus document, Br. J. Nutr., 81 (Suppl. 1), 1–27 (1999).

  5. V. A. Mar′in, A. L. Vereshchagin, and N. V. Bychin, in: Technology and Equipment of the Chemical, Biotechnology, and Food Industry, Proc. XIIth All-Russian Scientific-Practical Conference of Students, Graduate Students, and Young Scientists with International Participation (2019), pp. 509–512.

  6. V. A. Mar′in and A. L. Vereshchagin, Khranenie Pererab. Sel′khozsyr′ya, No. 1, 130–138 (2019).

  7. V. A. Mar′in, A. L. Vereshchagin, and N. V. Bychin, Khleboprodukty, No. 5, 58–61 (2019).

  8. D. Cozzolino, S. Roumeliotis, and J. Eglinton, Food Res. Int., 51, No. 2, 444–449 (2013).

    Article  Google Scholar 

  9. C. Miralbes, Food Chem., 106, 386–389 (2008).

    Article  Google Scholar 

  10. G. Foca, M. Cocchi, M. Li Vigni, R. Caramanico, M. Corbellini, and A. Ulrici, Chemom. Intell. Lab. Syst., 99, 91–100 (2009).

    Article  Google Scholar 

  11. P. R. Wiley, G. J. Tanner, and P. M. Chandler, J. Agric. Food Chem., 57, 4042–4050 (2009).

    Article  Google Scholar 

  12. S. Kuhnen, J. Ogliari, B. Dias, and P. Fernando, Int. J. Food Sci. Technol., 45, 1673–1681 (2010).

    Article  Google Scholar 

  13. R. McDonald (ed.), Colour Physics for Industry, Society of Dyers and Colourists, Bradford (1997) [Russian translation, Logos, Moscow (2002)].

  14. H. Croft, in: Comprehensive Remote Sensing, Vol. 3, Elsevier Inc., Toronto, Canada (2017), pp. 117–142.

    Google Scholar 

  15. L. Guidi, M. Tattini, and M. Landi, How Does Chloroplast Protect Chlorophyll Against Excessive Light? E. Jacob-Lopes (Ed.), IntechOpen, Chlorophyll-London, UK (2017), pp. 21–36.

  16. A. Anne Frank Joe and A. Gopal, Int. Conf. Circuit, Power and Computing Technologies (ICCPCT) (2017), pp. 1–5.

  17. M. Kumagai, K. Karube, T. Sato, N. Ohisa, T. Amano, R. Kikuchi, and N. Ogawa, Anal. Sci.: Int. J. Jpn. Soc. Anal. Chem., 18, No. 10, 1145–1150 (2002).

    Article  Google Scholar 

  18. D. Ertlen, D. Schwartz, M. Trautmann, R. Webster, and D. Brunet, Eur. J. Soil Sci., 61, 207–216 (2015).

    Article  Google Scholar 

  19. K. Dziedzic, D. Gorecka, A. Marques, M. Rudzinska, and G. Podolska, Czech. J. Food Sci., 33, 424–430 (2015).

    Article  Google Scholar 

  20. Yu. T. Platov, D. A. Metlenkin, and G. A. Bobozhonova, Khlebopech. Ross., No. 1, 24–28 (2020).

    Google Scholar 

  21. S. V. Murashev, S. A. Vorob′ev, and M. E. Zhemchuzhnikov, in: Sci. J. NIU ITMO, Ser. Protsessy Apparaty Pishch. Proizvod., No. 1 (2010); http://cyberleninka.ru/article/n/fizicheskie-i-himicheskie-prichiny-vozniknoveniyakrasnogo-tsveta-myasa.

  22. X. Zhou, T. Hao, Y. Zhou, W. Tang, Y. Xiao, X. Meng, and X. Fang, J. Food Sci. Technol., 52, No. 4, 2458–2463 (2015).

    Article  Google Scholar 

  23. S. M. Milenkovic, J. B. Zvezdanovic, T. D. Anđelkovic, and D. Z. Markovic, Adv. Technol., 1, No. 1, 16–24 (2012).

    Google Scholar 

  24. O. V. Voitsekhovskaja and E. V. Tyutereva, J. Plant Physiol., 189, 51–64 (2015).

    Article  Google Scholar 

  25. M. Kunugi, S. Satoh, K. Ihara, K. Shibata, Y. Yamagishi, K. Kogame, J. Obokata, A. Takabayashi, and A. Tanaka, Plant Cell Physiol., 57, 1231–1243 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. T. Platov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 4, pp. 541–549, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platov, Y.T., Metlenkin, D.A., Platova, R.A. et al. Buckwheat Identification by Combined UV-VIS-NIR Spectroscopy and Multivariate Analysis. J Appl Spectrosc 88, 723–730 (2021). https://doi.org/10.1007/s10812-021-01231-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01231-2

Keywords

Navigation