Synthesis and Spectral Analysis of Charge-Transfer Complexes of Triamterene Drug with 2,4,6-Trinitrophenol, 4-Nitrophenol, 4-Nitroacetophenone, and m-Dinitrobenzene Acceptors in the Solid-State Form: Experimental and DFT Studies

The present work aims to focus on the synthesis and spectral studies of the charge-transfer interaction between the nitro organic acceptors molecules [e.g., 2,4,6-trinitrophenol (PA), 4-nitrophenol (4-NP), 4-nitroacetophenone (4-NAP), and m-dinitrobenzene (m-DNB)] with triamterene (TM) drug donors, which have many applications in industry, biology, and chemistry. The CT complexes of PA and 4-NP are formed by the association of electrondeficient and electron-rich moieties, held together by the weak force of attraction through a hydrogen bond. These molecules have been explored through the FTIR and Raman spectroscopic techniques. The speculated 1:1 or 1:2 structures of the complexes [(TM)(PA)], [(TM)(4-NP)2], [(TM)(4-NAP)2], and [(TM)(m-DNB)2] determined by microanalytical and theoretical analyses shows that the interaction occurs through a H2N+–H···O−(O----H) (O–H----NH2) bond or by n–π* regarding 4-NAP and m-DNB complexes. The thermogravimetric technique was utilized to determine the thermostability of the synthesized charge-transfer complexes by making comparisons to their constituents. The computational study has been carried out on the studied molecule, which has the most stable conformer using density functional theory (DFT). A comparative study of electronic and vibrational spectroscopy has been done with that of experimental results. The experimentally obtained structure was compared with an optimized structure for various parameters, such as bond length, bond angles, oscillator strength, dipole moment, and molecular electrostatic potential is predicted theoretically. The energy band gap from HOMO-to-LUMO was theoretically estimated using (B3LYP/6-311++G(d,p) level) from frontier molecular orbital energies, and the outcome data are employed to characterize the chemical structures of the synthesized complexes based on molecular properties.

This is a preview of subscription content, access via your institution.


  1. 1.

    H. Benesi and J. Hildebrand, J. Am. Chem. Soc., 71, No. 8, 2703 (1949).

    Article  Google Scholar 

  2. 2.

    R. Dabestani, K. J. Reszka, and M. E. Sigman, J. Photochem. Photobiol. A, 117, 223 (1998).

    Article  Google Scholar 

  3. 3.

    F. Vogtle, Supramolecular Chemistry: An Introduction, Wiley, New York (1991).

    Google Scholar 

  4. 4.

    A. Eychmuller and A. L. Rogach, Pure Appl. Chem., 72, 179 (2000).

    Article  Google Scholar 

  5. 5.

    R. S. Mulliken, J. Am. Chem. Soc., 74, 811 (1952).

    Article  Google Scholar 

  6. 6.

    R. Foster, Organic Charge Transfer Complexes, Academic Press, New York (1969).

    Google Scholar 

  7. 7.

    R. S. Mulliken, J. Am. Chem. Soc., 72, 600 (1950).

    Article  Google Scholar 

  8. 8.

    R. S. Mulliken and W. B. Pearson, Molecular Complexes, Wiley Publishers, New York (1969).

    Google Scholar 

  9. 9.

    M. M. A. Hamed, M. I. Abdel-hamid, and M. R. Mahmoud, Monatsh Chem., 129, 4 (1998).

    Google Scholar 

  10. 10.

    K. Alam and I. M. Khan, Org. Electron., 63, 7 (2018).

    Article  Google Scholar 

  11. 11.

    I. M. Khan, K. Alam, and M. J. Alam, New J. Chem., 43, 9039 (2019).

    Article  Google Scholar 

  12. 12.

    A. Garcia, J. M. Elorzaand, and J. M. Ugalde, J. Mol. Struct. (Theochem), 501, 207 (2000).

    Article  Google Scholar 

  13. 13.

    S. Fomine, L. Fomina, and T. Ogawa, J. Mol. Struct. (Theochem), 540, 123 (2001).

    Article  Google Scholar 

  14. 14.

    S. Bhattacharya, M. Banerjee, and A. K. Mukherjee, Spectrochim. Acta A, 57, 2409 (2001).

    ADS  Article  Google Scholar 

  15. 15.

    A. Garcia, J.M. Elorza, and J.M. Ugalde, J. Phys. Chem. A, 102, 8974 (1998).

    Article  Google Scholar 

  16. 16.

    S. Reiling, M. Besnard, and P. A. Bopp, J. Phys. Chem. A, 101, 4409 (1997).

    Article  Google Scholar 

  17. 17.

    S. S. Chettu Ammal, S. P. Ananthavel, P. Venuvanalingam, and M. S. Hegde, J. Phys. Chem. A, 102, 532 (1998).

    Article  Google Scholar 

  18. 18.

    M. J. Frisch, et al., Gaussian 09, Revision D.01, Gaussian Inc, Wallingford CT, 2009.

  19. 19.

    J. R. Schmidt and W. F. Polik, WebMO Enterprise, version 18.1.001, WebMO LLC, Holland, MI, USA (2016),, accessed July, 2018.

  20. 20.

    B. D. Becke, Phys. Rev. A, 38, 3098 (1988).

    ADS  Article  Google Scholar 

  21. 21.

    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

    ADS  Article  Google Scholar 

  22. 22.

    R. Dennington, T. Keith, and J. Millam, GaussView, Ver. 5, Semichem Inc, Shawnee Mission KS (2009).

  23. 23.

    M. J. Arias, J. M. Gines, and J. R. Moyano, Int. J. Pharm., 153, 181 (1997).

    Article  Google Scholar 

  24. 24.

    A. P. Mukne and M. S. Nagarsenker, AAPS PharmSciTech., 5, 142 (2004).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Abeer A. El-Habeeb.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 2, p. 332, March–April, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Habeeb, A.A. Synthesis and Spectral Analysis of Charge-Transfer Complexes of Triamterene Drug with 2,4,6-Trinitrophenol, 4-Nitrophenol, 4-Nitroacetophenone, and m-Dinitrobenzene Acceptors in the Solid-State Form: Experimental and DFT Studies. J Appl Spectrosc 88, 389–400 (2021).

Download citation


  • triamterene
  • nitro organic acceptors
  • FTIR
  • charge-transfer
  • density functional theory
  • Raman spectroscopic