Skip to main content
Log in

Limits of Detection of Chemical Elements in an Aqueous Aerosol in Filament-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The capabilities of filament-induced breakdown spectroscopy for the analysis of the elemental composition of aqueous aerosols were estimated. The diameter of aqueous aerosol droplets in the atmosphere was 0.8–2.0 μm. The emission lines of the chemical elements were excited by fi lamentation of femtosecond laser pulses (60 fs, 800 nm, 4.4 mJ) in weak focusing mode by a lens with a focal length of 500 mm. The obtained limits of detection for Al (396.15 nm), Ba (553.35 nm), Ca (422.67 nm), Mg (285.21 nm), Na (588.99 nm), and Mn (403.08 nm) in an aqueous aerosol were 12.1, 41.7, 10.0, 7.3, 0.7, and 32.3 mg/L, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Baltensperger, J. Dommen, M. R. Alfarra, J. Duplissy, K. Gaeggeler, A. Metzger, M. C. Facchini, S. Decesari, E. Finessi, C. Reinnig, M. Schott, J. Warnke, T. Hoffmann, B. Klatzer, H. Puxbaum, M. Geiser, M. Savi, D. Lang, M. Kalberer, and T. Geiser, J. Aerosol Med. Pulm. Drug Deliv., 21, No. 1, 145–154 (2008).

    Article  Google Scholar 

  2. S. Tsunogai, O. Saito, K. Yamada, and S. Nakaya, J. Geophys. Res., C: Oceans Atmos., 77, No. 27, 5283–5292 (1972).

  3. I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, J. Geophys. Res.: Atmos., 109, No. D13, D13203, 1–15 (2004).

  4. K. A. Shmirko, V. V. Lisitsa, A. N. Pavlov, and S. Yu. Stolyarchuk, Proc. SPIE, 10833, 1083350 (2018).

    Google Scholar 

  5. C. Bockmann, I. Mironova, D. Muller, L. Schneidenbach, and R. Nessler, J. Opt. Soc. Am. A, 22, No. 3, 518–528 (2005).

    Article  ADS  Google Scholar 

  6. T. Nishizawa, N. Sugimoto, I. Matsui, A. Shimizu, B. Tatarov, and H. Okamoto, IEEE Trans. Geosci. Remote Sens., 46, No. 12, 4094–4103 (2008).

    Article  ADS  Google Scholar 

  7. S. L. Chin, H. L. Xu, Q. Luo, F. Theberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi , G. Mejean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Akozbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Chateauneuf, and J. Dubois, Appl. Phys. B: Lasers Opt., 95, No. 1, 1–12 (2009).

    Article  ADS  Google Scholar 

  8. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett., 20, No. 1, 73–75 (1995).

    Article  ADS  Google Scholar 

  9. A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, Appl. Phys. B: Lasers Opt., 73, No. 3, 287–290 (2001).

    Article  ADS  Google Scholar 

  10. A. A. Ilyin, S. S. Golik, K. A. Shmirko, A. Yu. Mayor, D. Yu. Proschenko, and Yu. N. Kulchin, Quantum Electron., 48, No. 2, 149–156 (2018).

    Article  ADS  Google Scholar 

  11. D. V. Apeksimov, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, A. N. Stepanov, N. S. Zakharov, and S. V. Kholod, Opt. Atmos. Okeana, 22, No. 11, 1035–1041 (2009).

    Google Scholar 

  12. D. V. Apeksimov, O. A. Bukin, S. S. Golik, A. A. Zemlyanov, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Pektrov, E. B. Sokolova, and E. E. Khoroshaeva, in: Proc. XXIVth All-Russian Sci. Conf. "Radiowave Propagation" (RRV-24) [in Russian], Irkutsk (2014), pp. 131–134.

  13. H. L. Xu and S. Leang Chin, Sensors, 11, No. 1, 32–53 (2011).

    Article  ADS  Google Scholar 

  14. J.-F. Daigle, G. Mejean, W. Liu, F. Theberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, Appl. Phys., 87, 749 (2007).

    Article  Google Scholar 

  15. H. L. Xu, W. Liu, and S. L. Chin, Opt. Lett., 31, No. 10, 1540–1542 (2006).

    Article  ADS  Google Scholar 

  16. J. F. Daigle, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, Opt. Commun., 278, No. 1, 147–152 (2007).

    Article  ADS  Google Scholar 

  17. V. I. Talanov, Pis′ma Zh. Eksp. Teor. Fiz., 11, No. 6, 303 (1970).

  18. W. Liu, Q. Luo, and S. L. Chin, Chin. Opt. Lett., 1, No. 1, 56–59 (2003).

    ADS  Google Scholar 

  19. A. Talebpour, M. Abdel-Fattah, and S. L. Chin, Opt. Commun., 183, Nos. 5–6, 479 (2000).

  20. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B: Laser Opt., 71, No. 6, 877–879 (2000).

    Article  ADS  Google Scholar 

  21. F. Theberge, W. Liu, P. Tr. Simard, A. Becker, and S. L. Chin, Phys. Rev., 74, No. 3, 036406(1–7) (2006).

  22. S. S. Golik, O. A. Bukin, A. A. Il′in, E. B. Sokolova, A. V. Kolesnikov, M. Y. Babiy, Y. N. Kul′chin, and A. A. Gal′chenko, J. Appl. Spectrosc., 79, No. 3, 471–476 (2012).

  23. S. S. Golik, V. V. Lisitsa, A. Yu. Maior, A. A. Il′in, Yu. S. Tolstonogova, A. V. Borovskii, N. N. Golik, D. Yu. Proshchenko, and M. Yu. Babii, Mezhdunar. Issled. Zh., 11, No. 89, 6–7 (2019).

  24. M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, John Wiley & Sons, Inc., Hoboken, New Jersey (2000).

    MATH  Google Scholar 

  25. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, Chichester, West Sussex, England, Hoboken, NJ (2006) [Russian translation, Tekhnosfera, Moscow (2009)].

  26. G. L. Long and J. D. Winefordner, Anal. Chem., 55, No. 7, 712A–724A (1983).

    Google Scholar 

  27. A. A. Ilyin and S. S. Golik, Spectrochim. Acta, Part B, 87, 192 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lisitsa.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 2, pp. 275–281, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golik, S.S., Mayor, A.Y., Lisitsa, V.V. et al. Limits of Detection of Chemical Elements in an Aqueous Aerosol in Filament-Induced Breakdown Spectroscopy. J Appl Spectrosc 88, 337–342 (2021). https://doi.org/10.1007/s10812-021-01179-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01179-3

Keywords

Navigation