Skip to main content

Limits of Detection of Chemical Elements in an Aqueous Aerosol in Filament-Induced Breakdown Spectroscopy

The capabilities of filament-induced breakdown spectroscopy for the analysis of the elemental composition of aqueous aerosols were estimated. The diameter of aqueous aerosol droplets in the atmosphere was 0.8–2.0 μm. The emission lines of the chemical elements were excited by fi lamentation of femtosecond laser pulses (60 fs, 800 nm, 4.4 mJ) in weak focusing mode by a lens with a focal length of 500 mm. The obtained limits of detection for Al (396.15 nm), Ba (553.35 nm), Ca (422.67 nm), Mg (285.21 nm), Na (588.99 nm), and Mn (403.08 nm) in an aqueous aerosol were 12.1, 41.7, 10.0, 7.3, 0.7, and 32.3 mg/L, respectively.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    U. Baltensperger, J. Dommen, M. R. Alfarra, J. Duplissy, K. Gaeggeler, A. Metzger, M. C. Facchini, S. Decesari, E. Finessi, C. Reinnig, M. Schott, J. Warnke, T. Hoffmann, B. Klatzer, H. Puxbaum, M. Geiser, M. Savi, D. Lang, M. Kalberer, and T. Geiser, J. Aerosol Med. Pulm. Drug Deliv., 21, No. 1, 145–154 (2008).

    Article  Google Scholar 

  2. 2.

    S. Tsunogai, O. Saito, K. Yamada, and S. Nakaya, J. Geophys. Res., C: Oceans Atmos., 77, No. 27, 5283–5292 (1972).

  3. 3.

    I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, J. Geophys. Res.: Atmos., 109, No. D13, D13203, 1–15 (2004).

  4. 4.

    K. A. Shmirko, V. V. Lisitsa, A. N. Pavlov, and S. Yu. Stolyarchuk, Proc. SPIE, 10833, 1083350 (2018).

    Google Scholar 

  5. 5.

    C. Bockmann, I. Mironova, D. Muller, L. Schneidenbach, and R. Nessler, J. Opt. Soc. Am. A, 22, No. 3, 518–528 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    T. Nishizawa, N. Sugimoto, I. Matsui, A. Shimizu, B. Tatarov, and H. Okamoto, IEEE Trans. Geosci. Remote Sens., 46, No. 12, 4094–4103 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    S. L. Chin, H. L. Xu, Q. Luo, F. Theberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi , G. Mejean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Akozbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Chateauneuf, and J. Dubois, Appl. Phys. B: Lasers Opt., 95, No. 1, 1–12 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett., 20, No. 1, 73–75 (1995).

    ADS  Article  Google Scholar 

  9. 9.

    A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, Appl. Phys. B: Lasers Opt., 73, No. 3, 287–290 (2001).

    ADS  Article  Google Scholar 

  10. 10.

    A. A. Ilyin, S. S. Golik, K. A. Shmirko, A. Yu. Mayor, D. Yu. Proschenko, and Yu. N. Kulchin, Quantum Electron., 48, No. 2, 149–156 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    D. V. Apeksimov, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, A. N. Stepanov, N. S. Zakharov, and S. V. Kholod, Opt. Atmos. Okeana, 22, No. 11, 1035–1041 (2009).

    Google Scholar 

  12. 12.

    D. V. Apeksimov, O. A. Bukin, S. S. Golik, A. A. Zemlyanov, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Pektrov, E. B. Sokolova, and E. E. Khoroshaeva, in: Proc. XXIVth All-Russian Sci. Conf. "Radiowave Propagation" (RRV-24) [in Russian], Irkutsk (2014), pp. 131–134.

  13. 13.

    H. L. Xu and S. Leang Chin, Sensors, 11, No. 1, 32–53 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    J.-F. Daigle, G. Mejean, W. Liu, F. Theberge, H. L. Xu, Y. Kamali, J. Bernhardt, A. Azarm, Q. Sun, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, Appl. Phys., 87, 749 (2007).

    Article  Google Scholar 

  15. 15.

    H. L. Xu, W. Liu, and S. L. Chin, Opt. Lett., 31, No. 10, 1540–1542 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    J. F. Daigle, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, Opt. Commun., 278, No. 1, 147–152 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    V. I. Talanov, Pis′ma Zh. Eksp. Teor. Fiz., 11, No. 6, 303 (1970).

  18. 18.

    W. Liu, Q. Luo, and S. L. Chin, Chin. Opt. Lett., 1, No. 1, 56–59 (2003).

    ADS  Google Scholar 

  19. 19.

    A. Talebpour, M. Abdel-Fattah, and S. L. Chin, Opt. Commun., 183, Nos. 5–6, 479 (2000).

  20. 20.

    J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B: Laser Opt., 71, No. 6, 877–879 (2000).

    ADS  Article  Google Scholar 

  21. 21.

    F. Theberge, W. Liu, P. Tr. Simard, A. Becker, and S. L. Chin, Phys. Rev., 74, No. 3, 036406(1–7) (2006).

  22. 22.

    S. S. Golik, O. A. Bukin, A. A. Il′in, E. B. Sokolova, A. V. Kolesnikov, M. Y. Babiy, Y. N. Kul′chin, and A. A. Gal′chenko, J. Appl. Spectrosc., 79, No. 3, 471–476 (2012).

  23. 23.

    S. S. Golik, V. V. Lisitsa, A. Yu. Maior, A. A. Il′in, Yu. S. Tolstonogova, A. V. Borovskii, N. N. Golik, D. Yu. Proshchenko, and M. Yu. Babii, Mezhdunar. Issled. Zh., 11, No. 89, 6–7 (2019).

  24. 24.

    M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, John Wiley & Sons, Inc., Hoboken, New Jersey (2000).

    MATH  Google Scholar 

  25. 25.

    D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, Chichester, West Sussex, England, Hoboken, NJ (2006) [Russian translation, Tekhnosfera, Moscow (2009)].

  26. 26.

    G. L. Long and J. D. Winefordner, Anal. Chem., 55, No. 7, 712A–724A (1983).

    Google Scholar 

  27. 27.

    A. A. Ilyin and S. S. Golik, Spectrochim. Acta, Part B, 87, 192 (2013).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Lisitsa.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 2, pp. 275–281, March–April, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golik, S.S., Mayor, A.Y., Lisitsa, V.V. et al. Limits of Detection of Chemical Elements in an Aqueous Aerosol in Filament-Induced Breakdown Spectroscopy. J Appl Spectrosc 88, 337–342 (2021). https://doi.org/10.1007/s10812-021-01179-3

Download citation

Keywords

  • emission spectrum
  • filament-induced breakdown spectroscopy
  • limit of detection
  • atmosphere
  • aqueous aerosol
  • femtosecond pulses