Experimental Study of Ar-Gas Radiation Behind the Front of a Strong Shock Wave

Emission spectra of argon behind the front of a strong shock wave are studied in the range of shock-wave velocities of 4.6–8.3 km/s and pressures before the wave front of 0.25–5.00 Torr. Time-integrated sweeps of radiation in a wide spectral range from the ultraviolet to infrared (190–1100 nm) and time dependences of the argon radiation intensity at wavelengths of 420, 532.8, and 740 nm are obtained. Three characteristic stages of the temporal evolution of the emission lines are defined. The dependences of the duration and intensity of the emission lines on the initial gas pressure and shock-wave velocity are established. Data are obtained on the background radiation intensity and can be used to separate the intensities of certain argon-atom lines from the total radiation.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. T. Surzhikov, Fluid Dynamics, 54, No. 1, 93–113 (2019).

    MathSciNet  Article  Google Scholar 

  2. 2.

    R. J. E. Abrantes, A. R. Karagozian, D. Bilyeu, and H. P. Le, J. Quant. Spectrosc. Radiat. Transf., 216, No. 1, 47–53 (2018).

    ADS  Article  Google Scholar 

  3. 3.

    K.-B. Chai and D.-H. Kwon, J. Quant. Spectrosc. Radiat. Transf., 227, No. 1, 136–144 (2019).

    ADS  Article  Google Scholar 

  4. 4.

    M. G. Kapper and J.-L. Cambier, J. Appl. Phys., 109, No. 113308, 1–14 (2011).

    Google Scholar 

  5. 5.

    A. K. Shuaibov, A. I. Minya, A. N. Malinin, Z. T. Homoki, and R. V. Hrytsak, J. Appl. Spectrosc., 78, No. 6, 867–872 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    K. E. Evdokimov, M. E. Konischev, V. F. Pichugin, and Z. Sun, Resour.-Effic. Technol., 3, No. 2, 187–193 (2017).

    Google Scholar 

  7. 7.

    J.-H. Sun, S.-R. Sun, L.-H. Zhang, and H.-X. Wang, Plasma Chem. Plasma Process., 40, No. 11, 1383–1400 (2020).

    Article  Google Scholar 

  8. 8.

    K. Dzierzega, W. Zawadzki, F. Sobczuk, M. L. Sankhe, S. Pellerin, M. Wartel, W. Olchawa, A. Baclawski, and B. Bartecka, J. Quant. Spectrosc. Radiat. Transf., 237, No. 106635, 1–8 (2019).

    Google Scholar 

  9. 9.

    I. E. Zabelinskii, L. B. Ibragimova, and O. P. Shatalov, J. Appl. Spectrosc., 73, No. 1, 10–15 (2006).

    ADS  Article  Google Scholar 

  10. 10.

    L. B. Ibraguimova, A. L. Sergievskaya, V. Yu. Levashov, O. P. Shatalov, Yu. V. Tunik, and I. E. Zabelinskii, J. Chem. Phys., 139, No. 034317, 1–10 (2013).

    Google Scholar 

  11. 11.

    P. V. Kozlov, J. Phys.: Conf. Ser., 1009, No. 012024, 1–6 (2018).

    Google Scholar 

  12. 12.

    N. G. Bykova, I. E. Zabelinskii, L. B. Ibragimova, P. V. Kozlov, S. V. Stovbun, A. M. Tereza, and O. P. Shatalov, Russ. J. Phys. Chem. B, 12, No. 1, 108–114 (2018).

    Article  Google Scholar 

  13. 13.

    Y.-D. Jung and C.-G. Kim, J. Plasma Phys., 67, Nos. 2–3, 191–197 (2002).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. Yu. Levashov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 2, pp. 244–248, March–April, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kozlov, P.V., Zabelinsky, I.E., Bikova, N.G. et al. Experimental Study of Ar-Gas Radiation Behind the Front of a Strong Shock Wave. J Appl Spectrosc 88, 306–310 (2021). https://doi.org/10.1007/s10812-021-01174-8

Download citation


  • shock wave
  • experiment
  • argon
  • emission spectrum