Skip to main content
Log in

Spectroscopic Analysis of the Interaction between Silver Nanoparticles and Trypsin

  • Published:
Journal of Applied Spectroscopy Aims and scope

The rapid development of nanoparticles (NPs) and their broad applications in medicine caused concerns about biological effects and biosafety. Here, the interaction of silver NPs (Ag NPs) and trypsin is studied with ultravioletvisible spectra, circular dichroism, and fluorescence spectra. Trypsin is exposed to various sizes and concentrations of Ag NPs. The intensities of the trypsin ultraviolet-visible absorption peaks are proportional to the Ag NP concentration and size. In the circular dichroism spectra, there was evidence that Ag NPs affected the secondary structure of trypsin. Fluorescence spectra show that the formation of the protein-nanoparticle complexes alters the protein chromophore chemical environment or structure and quenches its fluorescence. Hence, the extent of Ag NP binding of trypsin depends on both NP concentration and size, and changes the Ag NPs physicochemical properties as well as the trypsin secondary structure. With regard to nanomaterial safety, the interaction of NPs with proteins must be explored further for establishing NP toxicity and design guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mustafa and S. Komatsu, Curr. Proteomics, 14, No. 1, 3–12 (2017).

    Article  Google Scholar 

  2. Y. W. Wang, J. S. Kim, G. H. Kim, and K. S. Kim, Appl. Phys. Lett., 88, 143106 (2006).

    Article  ADS  Google Scholar 

  3. J. Varalda, C. A. Dartora, A. J. A. de Oliveira, W. A. Ortiz, B. Vodungbo, M. Marangolo, F. Vidal, Y. Zheng, G. G. Cabrera, and D. H. Mosca, Phys. Rev. B, 83, 045205 (2011).

    Article  ADS  Google Scholar 

  4. Y. Z. Liu, Y. T. Hu, R. S. Chen, W. T. Zhan, H. W. Ni, P. M. Zhang, and F. Liang, Curr. Nanosci., 12(999), 1–10 (2015).

    ADS  Google Scholar 

  5. D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, Nano Lett., 9, 666–671 (2009).

    Article  ADS  Google Scholar 

  6. I. Lynch and K. A. Dawson, Nano Today, 3, Nos. 1–2, 40 (2008).

    Article  Google Scholar 

  7. C. Nilofer, A. Sukhwal, A. Mohanapriya, and P. Kangueane, Bioinformation, 13, No. 6, 164–173 (2017).

    Article  Google Scholar 

  8. W. He, H. J. Dou, L. Zhang, L. J. Wang, R. Y. Wang, and J. B. Chang, Spectrochim. Acta A, 173, 188–195 (2017).

    Article  ADS  Google Scholar 

  9. S. T. Yang, Y. Liu, Y. W. Wang, and A. N. Cao, Small, 9, Nos. 9–10, 1635–1653 (2013).

    Article  Google Scholar 

  10. X. R. Li, Y. H. Yan, X. D. Cheng, W. Guo, and Y. R. Peng, Int. J. Biol. Macromol., 114, 836–843 (2018).

    Article  Google Scholar 

  11. R. Concalves, N. Mateus, I. Pianet, M. Laguerre, and V. D. Freitas, Langmuir, 27, 13122–13129 (2011).

    Article  Google Scholar 

  12. L. Gombos, J. Kardos, A. Patthy, P. Medveczky, L. Szilágyi, A. Málnási-Csizmadia, and L. Gráf, Biochemistry, 47, No. 6, 1675–1684 (2008).

    Article  Google Scholar 

  13. Y. Wan, Z. R. Guo, X. L. Jiang, K. Fang, X. Lu, Y. Zhang, and N. Gu, J. Colloid Interface Sci., 394, 263–268 (2013).

    Article  ADS  Google Scholar 

  14. W. R. Wang, R. R. Zhu, R. Xiao, H. Liu, and S. L. Wang, Biol. Trace Elem. Res., 142, No. 3, 435–446 (2011).

    Article  Google Scholar 

  15. P. D. Pino, B. Pelaz, Q. Zhang, P. Maffre, G. U. Nienhaus, and W. J. Parak, Mater. Horiz., 1, 301 (2014).

    Article  Google Scholar 

  16. S. S. Li, B. Q. Li, J. J. Liu, S. H. Lu, and H. L. Zhai, Proteins, 86, 751–758 (2018).

    Article  Google Scholar 

  17. S. Gautam, P. Dubey, and M. N. Gupta, Colloids Surf. B, 102C, 879–883 (2012).

    Google Scholar 

  18. A. Gebregeorgis, C. Bhan, O. Wilson, and D. Raghavan, J. Colloid Interface Sci., 389, No. 1, 31–41 (2013).

    Article  ADS  Google Scholar 

  19. S. Navea, R. Tauler, E. Goormaghtigh, and A. D. Juan, Proteins: Struct., Funct., Bioinform., 63, 527–541 (2006).

  20. N. J. Greenfi eld, Nat. Protoc., 1, No. 6, 2876–2890 (2007).

  21. L. Whitmore and B. A. Wallace, Biopolymers, 89, No. 5, 392–400 (2008).

    Article  Google Scholar 

  22. L. N. Geng, X. Wang, N. Li, M. H. Xiang, and K. Li, Colloids Surf. B, 34, No. 4, 231–238 (2004).

    Article  Google Scholar 

  23. V. M. Bolanos-Garcia, S. Ramos, R. Castillo, J. Xicohtencatl-Cortes, and J. Mas-Oliva, J. Phys. Chem. B, 105, 5757 (2001).

    Article  Google Scholar 

  24. J. Huang, Y. Z. Yuan, and H. Liang, Sci. China, Ser. B, 46, 387 (2003).

  25. P. M. Tessier, J. Jinkoji, Y. C. Cheng, J. L. Prentice, and A. M. Lenhoff, J. Am. Chem. Soc., 130, 3106–3112 (2008).

    Article  Google Scholar 

  26. M. Lv, E. G. Zhu, Y. Y. Su, Q. N. Li, W. X. Li, Y. Zhao, and Q. Huang, Prep. Biochem. Biotechnol., 39, 429–438 (2009).

    Article  Google Scholar 

  27. C. Wang, Q. H. Wu, C. R. Li, and Z. Wang, Anal. Sci., 23, No. 4, 429–433 (2007).

    Article  Google Scholar 

  28. Q. X. Mu, W. Liu, Y. H. Xing, H. Y. Zhou, Z. W. Li, Y. Zhang, L. H. Ji, F. Wang, Z. K. Si, B. Zhang, and B. Yan, J. Phys. Chem. C, 112, 3300–3307 (2008).

    Google Scholar 

  29. X. Y. Xie, Z. W. Wang, X. M. Zhou, and X. R. Wang, J. Hazard. Mater., 192, No. 3, 1291–1298 (2011).

    Article  Google Scholar 

  30. K. Sirine, A. J. Merrell, B. D. Ray, and H. I. Petrach, Biophys. J., 106, No. 2, 513a (2014).

  31. L. Song, H. N. Wang, S. W. Wang, H. Zhang, H. L. Cong, and P. Tien, J. Mater. Sci., 49, No. 7 (2014).

  32. H. Li, M. Wang, C. Z. Wang, W. Li, W. B. Qiang, and H. Li, Anal. Chem., 85, No. 9 (2013).

  33. S. H. D. Paoli, J. J. Park, C. W. Meuse, D. Pristinski, M. L. Becker, A. Karim, and J. F. Douglas, ACS Nano, 4, No. 1, 365–379 (2009).

    Google Scholar 

  34. T. B. Yuan, A. Weljie, and H. J. Vogel, Biochemistry, 37, No. 9, 3187–3195 (1998).

    Article  Google Scholar 

  35. Y. Q. Wang, H. M. Zhang, G. C. Zhang, and Q. H. Zhou, J. Mol. Struct., 886, Nos. 1–3, 77–84 (2008).

    Article  ADS  Google Scholar 

  36. W. Norde, Colloids Surf. B, 61, No. 1, 1–9 (2008).

    Article  MathSciNet  Google Scholar 

  37. P. K. Jain, W. Y. Huang, and M. A. EI-Sayed, Nano Lett., 7, No. 7, 2080–2088 (2007).

  38. Y. Ikeda, N. Taniguchi, and T. Noguchi, J. Biol. Chem., 275, No. 13, 9150–9156 (2000).

    Article  Google Scholar 

  39. K. A. Dill, Biochemistry, 29, No. 31, 7133–7155 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lu.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 1, p. 166, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Li, Y., Li, L. et al. Spectroscopic Analysis of the Interaction between Silver Nanoparticles and Trypsin. J Appl Spectrosc 88, 153–165 (2021). https://doi.org/10.1007/s10812-021-01154-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01154-y

Keywords

Navigation