Skip to main content
Log in

Isolation and Identification of 9-cis Astaxanthin by HPLC, FT-IR, and NMR Spectra

  • Published:
Journal of Applied Spectroscopy Aims and scope

This study aims to perform a detailed qualitative analysis of astaxanthin isomers. A rapid, open column chromatography method was developed to separate astaxanthin geometrical isomers in gram-scale levels. Chromatographic separation was performed using two silica gel columns with dichloromethane/n-hexane/diethyl ether (2:1:1, v/v/v) as elution system. The isolated isomers were identified as all-trans, 9-cis, 13-cis, and 15-cis astaxanthin, according to previously reported C30 high-performance liquid chromato graphy (HPLC) analysis data. Further, the fine structure of the single 9-cis astaxanthin isomer, as well as all-trans astaxanthin, was determined successfully for the first time by Fourier-transform infrared spectroscopy (FT-IR), one-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and two-dimensional homonuclear correlation and heteronuclear correlation NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Guerin, M. E. Huntley, and M. Olaizola, Trends Biotechnol., 21, 210–216 (2003).

    Article  Google Scholar 

  2. M. Cianci, P. J. Rizkallah, A. Olczak, J. Raftery, N. E. Chayen, P. F. Zagalsky, and J. R. Helliwell, Proc. Nat. Acad. Sci. USA, 99, 9795–9800 (2002).

    Article  ADS  Google Scholar 

  3. Y. M. Naguib, J. Agric. Food Chem., 48, 1150–1154 (2000).

    Article  Google Scholar 

  4. G. Hussein, U. Sankawa, H. Goto, K. Matsumoto, and H. Watanabe, J. Nat. Prod., 69, 443–449 (2006).

    Google Scholar 

  5. N. Shimidzu, M. Goto, and W. Miki, Fisheries Sci., 62, 134–137 (1996).

    Article  Google Scholar 

  6. H. Jyonouchi, S. Sun, K. Iijima, and M. D. Gross, Nutr. Cancer., 36, 59–65 (2000).

    Article  Google Scholar 

  7. H. Kurihara, H. Koda, S. Asami, Y. Kiso, and T. Tanaka, Life Sci., 70, 2509–2520 (2002).

    Article  Google Scholar 

  8. L. Zhang and H. Wang, Mar. Drugs, 13, 4310–4330 (2015).

    Article  Google Scholar 

  9. R. G. Fassett and J. S. Coombes, Mar. Drugs, 9, 447–465 (2011).

    Article  Google Scholar 

  10. R. G. Fassett and J. S. Coombes, Future Cardiol., 5, 333–342 (2009).

    Article  Google Scholar 

  11. H. Wu, H. Niu, A. Shao, C. Wu, B. Dixon, J. Zhang, S. Yang, and Y. Wang, Mar. Drugs, 13, 5750–5766 (2015).

    Article  Google Scholar 

  12. X. Liu and T. Osawa, Biochem. Biophys. Res. Commun., 357, 187–193 (2007).

    Article  ADS  Google Scholar 

  13. B. Bjerkeng, M. Følling, S. Lagocki, T. Storebakken, J. J. Olli, and N. Alsted, Aquaculture, 157, 63–82 (1997).

    Article  Google Scholar 

  14. J. P. Yuan and F. Chen, J. Agric. Food Chem., 47, 3656–3660 (1999).

    Article  Google Scholar 

  15. J. P. Yuan and F. Chen, Food Chem., 73, 131–137 (2001).

    Article  Google Scholar 

  16. W. J. De Bruijn, Y. Weesepoel, J. P. Vincken, and H. Gruppen, Food Chem., 194, 1108–1115 (2016).

    Article  Google Scholar 

  17. A. Mortensen and L. H. Skibsted, J. Agric. Food Chem., 48, 279–286 (2000).

    Article  Google Scholar 

  18. C. S. Chen, S. H. Wu, Y. Y. Wu, J. M. Fang, and T. H. Wu, Org. Lett., 9, 2985–2988 (2007).

    Article  Google Scholar 

  19. L. Zhao, F. Chen, G. Zhao, Z. Wang, X. Liao, and X. Hu, J. Agric. Food Chem., 53, 9620–9623 (2005).

    Article  Google Scholar 

  20. G. Euglert and M. Vecchi, Helv. Chim. Acta, 63, 1711–1718 (1980).

    Article  Google Scholar 

  21. D. Qiu, W. L. Zhu, C. K. Tang, L. F. Shi, and H. Q. Gao, Food Anal. Methods, 7, 597–605 (2014).

    Article  Google Scholar 

  22. D. Qiu, Y. C. Wu, W. L. Zhu, H. Yin, and L. T. Yi, J. Food Sci., 77, C934–C940 (2012).

    Article  Google Scholar 

  23. M. D. Grynbaum, P. Hentschel, K. Putzbach, J. Rehbein, M. Krucker, G. Nicholson, and K. Albert, J. Sep. Sci., 28, 1685–1693 (2005).

    Google Scholar 

  24. F. Miao, D. Lu, Y. Li, and M. Zeng, Anal. Biochem., 352, 176–181 (2006).

    Article  Google Scholar 

  25. D. Qiu, Y. Bai, and Y. C. Shi, Food Chem., 135, 665–671 (2012).

    Article  Google Scholar 

  26. K. Holtin, M. Kuehnle, J. Rehbein, P. Schuler, G. Nicholson, and K. Albert, Anal. Bioanal. Chem., 395, 1613 (2009).

    Article  Google Scholar 

  27. R. N. Rao, S. N. Alvi, B. N. Rao, and H. Group, J. Chromatogr. A, 1076, 189–192 (2005).

    Google Scholar 

  28. W. Sun, H. Lin, Y. Zhai, L. Cao, K. Leng, and L. Xing, Sep. Sci. Technol., 50, 1377–1383 (2015).

    Article  Google Scholar 

  29. G. Britton, S. Liaaen-Jensen, and H. Pfander, Carotenoids, Vol. 1B: Spectroscopy, Birkhäuser (1994).

  30. R. J. Anderson, D. J. Bendell, and P. W. Groundwater, Organic Spectroscopic Analysis, Royal Soc. Chem. (2004).

  31. K. Pihlaja and E. Kleinpeter, Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis, John Wiley and Sons (1994).

  32. N. Kumar, S. R. Devineni, G. Singh, A. Kadirappa, S. K. Dubey, and P. Kumar, J. Pharm. Biomed., 119, 114–121 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Qiua.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No.1, pp. 109–118, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, Y., Wang, T. et al. Isolation and Identification of 9-cis Astaxanthin by HPLC, FT-IR, and NMR Spectra. J Appl Spectrosc 88, 97–107 (2021). https://doi.org/10.1007/s10812-021-01146-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01146-y

Keywords

Navigation