Skip to main content
Log in

Characterization of Fresh Milk Products Based on Multidimensional Raman Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of integration time on Raman spectral data collected from fresh milk products was investigated and analyzed. The collected spectral data were denoised by wavelet transform to remove signal interference. Two-dimensional correlation Raman spectra of the fresh milk products were then constructed using two-dimensional correlation analysis and laser integrating time as an external perturbation. Finally, feature extraction was carried out, and the Euclidean distance was calculated. Thus, the similarities between fresh milk products of the same brand and different brands were quantitatively analyzed and calculated from Raman spectroscopy, two-dimensional correlation Raman spectroscopy, and feature extraction. The results showed that the quality of fresh milk products of the same brand fluctuated but maintained a high consistency. The differences between different brands of fresh milk products under the same detection conditions were much greater than within the same brand samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen and N. Ye, Food Anal. Methods, 9, No. 9, 2452–2462 (2016).

    Article  Google Scholar 

  2. A. Gliszczyńska-Świgło and J. Chmielewski, Food Anal. Methods, 10, No. 6, 1800–1816 (2017).

    Article  Google Scholar 

  3. A. Kaleem, M. Azmat, A. Sharma, G. Shen, and X. Ding, Food Chem., 277, 624–631 (2019).

    Article  Google Scholar 

  4. F. K. Alsammarraie and M. Lin, J. Agric. Food Chem., 65, No. 3, 666–674 (2017).

    Article  Google Scholar 

  5. Z. Zhang, M. Sha, J. Liu, and H. Wang, China Dairy Ind., 45, No. 6, 49–51 (2017).

    Google Scholar 

  6. M. K. Nieuwoudt, S. Holroyd, C. M. Mcgoverin, M. C. Simpson, and D. E. Williams, J. Dairy Sci., 99, No. 4, 2520–2536 (2016).

    Article  Google Scholar 

  7. Z. Zhang, J. Liu, and H. Wang, Anal. Lett., 48, No. 12, 1930–1940 (2015).

    Article  Google Scholar 

  8. M. Ritota and P. Manzi, Food Anal. Methods, 11, No. 1, 128–147 (2018).

    Article  Google Scholar 

  9. I. Noda and Y. Ozaki, Two-Dimensional Correlation Spectroscopy – Applications in Vibrational and Optical Spectroscopy, John Wiley & Sons, Ltd., Chichester, 1–195 (2005).

  10. Y. Park, S. Jin, I. Noda, and Y. M. Jung, J. Mol. Struct., 1168, 1–21 (2018).

    Article  ADS  Google Scholar 

  11. S. Mazurek, R. Szostak, T. Czaja, and A. Zachwieja, Talanta, 138, 285–289 (2015).

    Article  Google Scholar 

  12. N. Ahmad and M. Saleem, Int. D airy J., 89, 119–128 (2019).

    Google Scholar 

  13. T. O. Mendes, G. M. A. Junquei ra, B. L. S. Porto, C. D. Brito, F. Sato, M. A. L. De Oliveira, V. Anjos, and M. J. V. Bell, J. Raman Spectrosc., 47, No. 6, 692–698 (2016).

    Article  ADS  Google Scholar 

  14. N. N. Yazgan Karacaglar, T. Bulat, I. H. Boyaci, and A. Topcu, J. Food Drug Anal., 27, No. 1, 101–110 (2019).

    Article  Google Scholar 

  15. A. Amjad, R. Ullah, S. Khan, M. Bilal, and A. Khan, Vib. Spectrosc., 99, 124–129 (2018).

    Article  Google Scholar 

  16. E. C. Y. Li-Chan, Trends Food Sci. Technol., 7, No. 11, 361–370 (1996).

    Article  Google Scholar 

  17. M. R. Almeida, K. D. S. Oliveira, R. Stephani, and L. F. C. De Oliveira, J. Raman Spectrosc., 42, No. 7, 1548–1552 (2011).

    Article  ADS  Google Scholar 

  18. P. H. R. Júnior, K. D. S. Oliveira, C. E. R. D. Almeida, L. F. C. D. Oliveira, R. Stephani, M. D. S. Pinto, A. F. D. Carvalho, and Í. T. Perrone, Food Chem., 196, 584–588 (2016).

    Article  Google Scholar 

  19. Z. Zhang, T. Yue, J. Ma, S. Sun, J. Liu, and H. Wang, Chin. J. Anal. Lab., 38, No. 5, 553–557 (2019).

    Google Scholar 

  20. V. D. Hoang, Trac. Trends Anal. Chem., 62, 144–153 (2014).

    Article  Google Scholar 

  21. Z. Zhang, M. Sha, and H. Wang, J. Raman Spectrosc., 48, No. 8, 1111–1115 (2017).

    Article  ADS  Google Scholar 

  22. Y. Park, I. Noda, and Y. M. Jung, J. Mol. Struct., 1124, 11–28 (2016).

    Article  ADS  Google Scholar 

  23. W. He, J. Zhou, H. Cheng, L. Wang, K. Wei, W. Wang, and X. Li, Spectrochim. Acta A, 86, 399–404 (2012).

    Article  ADS  Google Scholar 

  24. J. Chen, Q. Zhou, I. Noda, and S. Sun, Anal. Chim. Acta, 649, No. 1, 106–110 (2009).

    Article  Google Scholar 

  25. Y. Xie, Q. You, P. Dai, S. Wang, P. Hong, G. Liu, J. Yu, X. Sun, and Y. Zeng, Spectrochim. Acta A, 222, 117086 (2019).

    Article  Google Scholar 

  26. Z. Zhang, D. Gui, M. Sha, J. Liu, and H. Wang, J. Dairy Sci., 102, No. 1, 68–76 (2019).

    Article  Google Scholar 

  27. N. Ahmad and M. Saleem, Spectrochim. Acta A, 223, 117311 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yong Zhang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, p. 1025, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZY., Li, SW., Sha, M. et al. Characterization of Fresh Milk Products Based on Multidimensional Raman Spectroscopy. J Appl Spectrosc 87, 1206–1215 (2021). https://doi.org/10.1007/s10812-021-01130-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01130-6

Keywords

Navigation