Skip to main content
Log in

Energy Dispersive X-Ray Fluorescence Matrix Analysis for Nutrients in Fenugreek Plant–Soil Setup Influenced by both Fertilization and Soil Texture

  • Published:
Journal of Applied Spectroscopy Aims and scope

In energy dispersive X-ray fluorescence (EDXRF) analytical studies of samples, the absorption and enhancement of analyte X-rays, collectively called matrix effects, complicate the relation between intensity of analyte X-rays and its concentration. Earlier, the absorption and enhancement relative terms have been derived from the builtup experimental relations of analyte X-ray counts with XRF fundamental parameters and the parameters of the experimental setup for each selective and enhanced X-rays. Now, the terms are implemented on the determined amounts of potassium and calcium nutrients in plants and pot soils from an experiment performed in the lab by growing fenugreek plants on the soils with variable contamination levels and applied fertilizers. The variation pattern of the terms with respective nutrient contents is found to be affected by the basic nature of soils. The pattern shows the high sensitivity of the terms to the plant's behaviour in soil and reflects the picture of supressed benefits of applied fertilizers to the heavy-metals contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Bertin, Principles and Practice of X-Ray Spectrometric Analysis, 2nd ed., Plenum Press, New York, London (1975).

    Book  Google Scholar 

  2. R. Jenkins, R. W. Gould, and D. Gedcke, Quantitative X-ray Spectrometry, 2nd ed., Marcel Dekker Inc., New York (1995).

    Book  Google Scholar 

  3. B. Beckhoff, B. Kanngieber, N. Langhoff, R. Wedell, and H. Wolff, Handbook of Practical X-Ray Fluorescence Analysis, Springer-Verlag Berlin, Heidelberg, Germany (2006).

    Book  Google Scholar 

  4. M. Bansal and R. Mittal, DAE-BRNS Symposium on Atomic Molecular and Optical Physics (NCAMP-XVII), IUAC, New Delhi, p. 138 (2009).

    Google Scholar 

  5. M. Bansal and R. Mittal, Asian J. Chem., 21b, 264–270 (2009).

    Google Scholar 

  6. M. Bansal, K. Deep, and R. Mittal, Appl. Radiat. Isot., 70, 2525–2533 (2012).

    Article  Google Scholar 

  7. T. Crommentuijn, M. D. Polder, and E. J. van de Plassche, RIVM Report no. 601501 001, Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account (1997).

    Google Scholar 

  8. H. Shayler, M. McBride, and E. Harrison, Cornell Waste Management Institute 2009, pp. 1–6 (2009).

    Google Scholar 

  9. G. S. Dheri, M. S. Brar, and S. S. Malhi, Commun. Soil Sci. Plant Anal., 38, 1655–1672 (2007).

    Article  Google Scholar 

  10. S. Singh, M. Zacharias, S. Kalpana, and S. Mishra, J. Environ. Chem. Ecotoxicol., 4, 75–81 (2012).

    Google Scholar 

  11. K. Grodzinvska, Int. J. Environ. Pollut., 9, 83–97 (1978).

    Google Scholar 

  12. R. Kostka-Rick and W. J. Manning, Environ. Pollut., 82, 107–138 (1993).

    Article  Google Scholar 

  13. R. Mittal, K. L. Allawadhi, B. S. Sood, N. Singh, Anita, and P. Kumar, X-ray Spectrom., 22, 413–417 (1993).

    Article  ADS  Google Scholar 

  14. I. Cakmak, J. Plant Nutr. Soil Sci., 168, 521–530 (2005).

    Google Scholar 

  15. Q. R. Wang, Y. S. Cui, X. M. Liu, Y. T. Dong, and P. Christie, J. Environ. Sci. Health, A, 38, 823–838 (2011).

    Article  Google Scholar 

  16. S. Chen, L. Sun, T. Sun, L. Chao, and G. Guo, Environ. Geochem. Health, 29, 435–446 (2007).

    Article  Google Scholar 

  17. P. K. Hepler, Plant Cell, 17, 2142–2155 (2005).

    Article  Google Scholar 

  18. S. T. Jakobsen, Acta Agric. Scand. B: Soil Plant Sci., 43, 6–10 (2009).

    Google Scholar 

  19. M. N. Cordones, F. Aleman, and V. M. F. Rubio, J. Plant Physiol., 171, 688–695 (2014).

    Article  Google Scholar 

  20. N. Tuteja and S. Mahajan, Plant Signal. Behav., 2, 79–85 (2007).

    Article  Google Scholar 

  21. C. Johansen, D. G. Edwards., and J. F. Loneragan, Plant Physiol., 43, 1717–1721 (1968).

    Article  Google Scholar 

  22. U. R. Malvi and Karnataka, J. Agric. Sci., 24, 106–109 (2011).

    Google Scholar 

  23. Vandana and R. Mittal, Appl. Radiat. Isot., 54, 377–382 (2001).

    Article  Google Scholar 

  24. D. B. Metcalfe, M. Williams, L. E. Aragao, A. C. da Costa, S. S. de Almeida, A. P. Braga, P. H. Goncalves, J. de Athaydes, S. Junior, Y. Malhi, and P. A. Meir, New Phytol., 174, 697–703 (2007).

    Article  Google Scholar 

  25. R. Mittal, K. L. Allawadhi, and B. S. Sood, X-Ray Spectrom., 16, 37–39 (1987).

    Article  ADS  Google Scholar 

  26. M. Bansal, Studies of X-ray Fluorescence for Its Analytical Applications, Ph.D. Thesis, Punjabi University, Patiala, India (2008).

    Google Scholar 

  27. S. Gupta, K. Deep, L. Jain, M. A. Ansari, V. K. Mittal, and R. Mittal, Appl. Radiat. Isot., 68, 1922–1927 (2010).

    Article  Google Scholar 

  28. Z. Rengel, In: Heavy Metal Stress in Plants, Springer, Berlin, Heidelberg (1999).

    Google Scholar 

  29. G. U. Chibuike and S. C. Obiora, Appl. Environ. Soil Sci., 1–12 (2014).

  30. D. Cataldo and R. Wildung, Environ. Health Perspect., 27, 149–159 (1978).

    Article  Google Scholar 

  31. A. Siedlecka, Acta Soc. Bot. Pol., 64, 265–272 (1995).

    Article  Google Scholar 

  32. M. Pesarrakli, Handbook of Plant and Crop Stress, 2nd ed., Marcel Decker Inc., New York (1999).

    Book  Google Scholar 

  33. K. L. Sahrawat, J. Indian Soc. Soil Sci., 51, 409–417 (2003).

    Google Scholar 

  34. M. Becker and F. Asch, J. Plant Nutr. Soil Sci., 168, 558–573 (2005).

    Google Scholar 

  35. J. D. Bewley and M. Black, Seeds: Physiology of Development and Germination, Springer, US, pp. 1–27 (1985).

    Book  Google Scholar 

  36. R. S. Mehta, B. S. Patel, and S. S. Meena, Indian J. Agric. Sci., 80, 970–974 (2010).

    Google Scholar 

  37. R. E. D. Snowden (nee Cook) and B. D. Wheeler, J. Ecol., 81, 35–46 (1993).

  38. J. B. Wilson, Evolution, 42, 408–413 (1988).

    Article  Google Scholar 

  39. H. Li, X. Yang, and A. C. Luo, J. Plant Nutr., 24, 1849–1860 (2001).

    Article  Google Scholar 

  40. B. K. Parida, I. M. Chhibba, and V. K. Nayyar, Scientia Hort., 98, 113–119 (2003).

    Article  Google Scholar 

  41. L. Kaur, J. Agric. Ecol., 1, 22–34 (2016).

    Google Scholar 

  42. T. Tandano, J. Sci. Soil Manure, 41, 498–501 (1970).

    Google Scholar 

  43. M. Yamauchi, Plant Soil, 117, 275–286 (1989).

    Article  Google Scholar 

  44. B. P. Singh, M. Das, M. Ram, B. S. Dwevedi, and R. N. Prasad, J. Indian Soil Sci., 40, 326–328 (1992).

    Google Scholar 

  45. K. K. Baruah and B. Nath, Indian J. Plant Physiol., 1, 114–118 (1996).

    Google Scholar 

  46. W. F. Lorehwing, Plant Physiol., 3, 261–275 (1928).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mittal.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, p. 1023, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P., Mittal, R. Energy Dispersive X-Ray Fluorescence Matrix Analysis for Nutrients in Fenugreek Plant–Soil Setup Influenced by both Fertilization and Soil Texture. J Appl Spectrosc 87, 1185–1195 (2021). https://doi.org/10.1007/s10812-021-01128-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01128-0

Keywords

Navigation