Skip to main content
Log in

Spectrofluorimetric Determination of Hypericin in Drugs and Vegetable Raw Materials

  • Published:
Journal of Applied Spectroscopy Aims and scope

Hypericin was isolated from Diahyperon tincture for use as a standard sample. The chromatographic purity of the hypericin was confirmed by high-performance liquid chromatography/mass spectrometry. Hypericin has the only chromatographic peak with a retention time of 23.10 min and gave a characteristic signal for the molecular ion [M – H+] with m/z 504.05 in the mass spectrum. Electronic absorption spectra of Diahyperon tincture and the MeOH extract of Hyperici herba (Hypericum perforatum) showed characteristic hypericin bands at 550 and 590 nm and a band at 665 nm that was due to the presence of chlorophyll. It was shown that excitation of hypericin in Diahyperon tincture at λex = 470 nm gave an emission spectrum with characteristic hypericin bands at 593 and 640 nm while the emission spectrum of the MeOH extract of Hyperici herba showed the hypericin emission bands and a weak chlorophyll emission band at 670 nm. It was found that spectrophotometric and spectrofluorimetric determinations of hypericin in Diahyperon tincture and in Hyperici herba gave similar results that were consistent with the standardized values of the hypericin content in the studied samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Y. Mir, S. Hamid, A. N. Kamili, and Q. P. Hassan, J. Plant Biochem. Biotechnol., 28, No. 4, 357–373 (2019).

    Article  Google Scholar 

  2. V. A. Huck-Pezzei, L. K. Bittner, J. D. Pallua, H. Sonderegger, G. Abel, M. Popp, G. K. Bonn, and C. W. Huck, Anal. Methods, 5, No. 3, 616–628 (2013).

    Article  Google Scholar 

  3. A. Agapouda, A. Booker, T. Kiss, J. Hohmann, M. Heinrich, and D. Csupor, J. Pharm. Pharmacol., 71, No. 1, 15–37 (2019).

    Article  Google Scholar 

  4. R. Dolezal, I. Houdkova, H. Kalasz, R. Andrys, M. Novak, N. V. Maltsevskaya, N. Karaskova, K. Kolar, E. Novotna, K. Kuca, and J. Z. Karasova, Anal. Lett., 52, No. 11, 1788–1812 (2019).

    Article  Google Scholar 

  5. S. Puri, G. Handa, A. K. Kalsotra, V. K. Gupta, A. S. Shawl, O. P. Suri, and G. N. Qazi, J. Chromatogr. Sci., 44, No. 4, 177–180 (2006).

    Article  Google Scholar 

  6. W. Li and J. F. Fitzloff, J. Chromatogr. B: Biomed. Sci. Appl., 765, No. 1, 99–105 (2001).

    Article  Google Scholar 

  7. A. Zotou and Z. Loukou, Chromatographia, 54, Nos. 3–4, 218–224 (2001).

    Article  Google Scholar 

  8. A. G. Jensen, C. Cornett, L. Gudiksen, and S. H. Hansen, Phytochem. Anal., 11, No. 6, 387–394 (2000).

    Article  Google Scholar 

  9. U. Ruckert, K. Eggenreich, W. Likussar, R. Wintersteiger, and A. Michelitsch, Phytochem. Anal., 17, No. 3, 162–167 (2006).

    Article  Google Scholar 

  10. V. A. Kurkin and O. E. Pravdivtseva, Khim.-Farm. Zh., 42, No. 10, 39–42 (2008).

    Google Scholar 

  11. N. A. Kovalenko, G. N. Supichenko, V. N. Leont’ev, and O. V. Stasevich, Tr. BGTU, No. 4, 224–227 (2013).

  12. A. A. Sheryakov, State Pharmacopoeia of the Republic of Belarus. General and Special Pharmaceutical Monographs, Minsk (2007), pp. 346–348.

  13. Q. Liu, F. Wackenhut, O. Hauler, M. Scholz, S. zur Oven-Krockhaus, R. Ritz, P. M. Adam, M. Brecht, and A. J. Meixner, J. Phys. Chem. A, 124, No. 12, 2497–2504 (2020).

    Article  Google Scholar 

  14. PMM RB 2563-18. Diahyperon.

  15. D. Skalkos, E. Gioti, C. D. Stalikas, H. Meyer, T. G. Papazoglou, and G. Filippidis, J. Photochem. Photobiol., B, 82, No. 2, 146–151 (2006).

    Article  Google Scholar 

  16. R. J. Ritchie, Photosynth. Res., 89, No. 1, 27–41 (2006).

    Article  Google Scholar 

  17. P. Delcanale, C. Hally, S. Nonell, S. Bonardi, C. Viappiani, and S. Abbruzzetti, Photochem. Photobiol. Sci., 19, No. 3, 324–331 (2020).

    Article  Google Scholar 

  18. M. Bublik, C. Head, P. Benharash, M. Paiva, A. Eshraghi, T. Kim, and R. Saxton, Photomed. Laser Surg., 24, No. 3, 341–347 (2006).

    Article  Google Scholar 

  19. A. Kubin, H. G. Loew, U. Burner, G. Jessner, H. Kolbabek, and F. Wierrani, Pharmazie, 63, No. 4, 263–269 (2008).

    Google Scholar 

  20. T. I. Na Ayudhya, F. T. Posey, J. C. Tyus, and N. N. Dingra, J. Chem. Educ., 92, No. 5, 920–923 (2015).

    Article  Google Scholar 

  21. M. Saleem, N. Ahmad, H. Ali, M. Bilal, S. Khan, R. Ullah, M. Ahmed, and S. Mahmood, Laser Phys., 27, No. 12, 125602 (2017); https://doi.org/10.1088/1555-6611/aa8cd7.

    Article  ADS  Google Scholar 

  22. L. Liebes, Y. Mazur, D. Freeman, D. Lavie, G. Lavie, N. Kudler, S. Mendoza, B. Levin, H. Hochster, and D. Meruelo, Anal. Biochem., 195, No. 1, 77–85 (1991).

    Article  Google Scholar 

  23. S. V. Didra, O. V. Slobodyanyuk, V. M. Yashchuk, M. F. Gamaliya, and P. V. Ermak, Klin. Eksp. Patol., 11, No. 1, 51–54 (2012).

    Google Scholar 

  24. A. Uzdensky, V. Iani, L. W. Ma, and J. Moan, Med. Laser Appl., 21, No. 4, 271–276 (2006).

    Article  Google Scholar 

  25. N. A. Kovalenko, A. V. Yantsevich, G. N. Supichenko, and V. N. Leont’ev, Tr. BGTU, No. 4, 207–210 (2015).

  26. D. S. English, K. Das, K. D. Ashby, J. Park, J. W. Petrich, and E. W. Castner, J. Am. Chem. Soc., 119, No. 48, 11585–11590 (1997).

    Article  Google Scholar 

  27. G. H. Constantine and J. Karchesy, Pharm. Biol., 36, No. 5, 365–367 (1998).

    Article  Google Scholar 

  28. A. Wirz, Analytical and Phytochemical Investigations on Hypericin and Related Compounds of Hypericum Perforatum, ETH Zurich, Zurich (2000), pp. 54–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Leontiev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, pp. 971–976, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontiev, V.N., Lazovskaya, O.I., Kosyak, D.A. et al. Spectrofluorimetric Determination of Hypericin in Drugs and Vegetable Raw Materials. J Appl Spectrosc 87, 1100–1104 (2021). https://doi.org/10.1007/s10812-021-01115-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01115-5

Keywords

Navigation