Skip to main content
Log in

Chlorophyll Fluorescence Imaging in Fruit Plant Breeding for Resistance to Dehydration and Hyperthermia

  • Published:
Journal of Applied Spectroscopy Aims and scope

The possibility of using chlorophyll fluorescence visualization in practical apple and apricot breeding is considered. Significant influences of water deficit and heat shock on the photosynthetic activity of leaves as estimated from their fluorescent images are found. The most sensitive indicator for detecting the degree of drought-induced depression of fruit plants is confirmed to be the effective quantum yield of photosystem II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Maxwell and G. N. Johnson, J. Exp. Bot., 51, 659–668 (2000).

    Article  Google Scholar 

  2. N. R. Baker and E. Rosenqvist, J. Exp. Bot., 55, 1607–1621 (2004).

    Article  Google Scholar 

  3. M. H. Kalaji, V. N. Goltsev, K. Zuk-Golaszewska, M. Zivcak, and M. Brestic, Chlorophyll Fluorescence Understanding Crop Performance — Basics and Applications, 1st ed., eBook Publ. 23 May, 2017, CRC Press, Boca Raton (2017); https://doi.org/10.1201/9781315153605.

  4. L. Guidi, M. Landi, C. Penella, and A. Calatayud, Ann. Bot. (Rome), No. 6, 5–22 (2016).

  5. M. Kitajima and W. L. Butler, Biochim. Biophys. Acta, 376, 105–115 (1975).

    Article  Google Scholar 

  6. O. Bjorkman and B. Demmig, Planta, 170, 489–504 (1987).

    Article  Google Scholar 

  7. B. Genty, J.-M. Briantais, and N. R. Baker, Biochim. Biophys. Acta, Gen. Subj., 990, 87–92 (1989).

    Article  Google Scholar 

  8. K. Rohacek, Photosynthetica, 40, No. 1, 13–29 (2002).

    Article  Google Scholar 

  9. J. Burke, Plant Physiol., 143, 108–121 (2007).

    Article  Google Scholar 

  10. A. Oukarroum, S. E. Madidi, and G. Schansker, J. Exp. Bot., 60, 438–446 (2007).

    Article  Google Scholar 

  11. Y. Tang, X. Wen, Q. Lu, Z. Yang, Z. Cheng, and C. Lu, Plant Physiol., 143, 629–638 (2007).

    Article  Google Scholar 

  12. E. Janka, O. Korner, E. Rosenqvist, and C.-O. Ottosen, Plant Physiol. Biochem., 67, 87–94 (2013).

    Article  Google Scholar 

  13. D. Sharma, S. Andersen, C. Ottosen, and E. Rosenqvist, Plant Physiol., 153, 298–298 (2014).

    Google Scholar 

  14. D. Epron, J. Exp. Bot., 48, 1835–1841 (1997).

    Google Scholar 

  15. J. Flexas, M. J. Briantais, Z. Cerovic, H. Medrano, and I. Moya, Remote Sens. Environ., 73, 283–270 (2000).

    Article  ADS  Google Scholar 

  16. K. Oxborough, J. Exp. Bot., 55, 1195–1205 (2004).

    Article  Google Scholar 

  17. E. Gorbe and A. Calatayud, Sci. Hortic., 138, 24–35 (2012).

    Article  Google Scholar 

  18. J. M. Da Silva, in: Applied Photosynthesis — New Progress, M. Najafpour (Ed.), IntechOpen, London (2016); doi: https://doi.org/10.5772/62391.

  19. R. P. Barbagallo, K. Oxborough, K. E. Pallett, and N. R. Baker, Plant Physiol., 132, 485–493 (2003).

    Article  Google Scholar 

  20. N. S. Woo, M. R. Badger, and B. J. Pogson, Plant Methods, 27, No. 4, 1746–1811 (2008).

    Google Scholar 

  21. D. J. Chen, K. Neumann, S. Friedel, B. Kilian, M. Chen, and T. Altmann, Plant Cell, 26, 4636–4655 (2014); doi: https://doi.org/10.1105/tpc.114.129601.

    Article  Google Scholar 

  22. J. Yao, D. Sun, H. Cen, H. Xu, H. Weng, F. Yuan, and Y. He, Front. Plant Sci., 9, 603 (2018); doi: https://doi.org/10.3389/fpls.2018.00603.

    Article  Google Scholar 

  23. K. Omasa, K. L. Shimazaki, I. Aiga, W. Larcher, and M. Onoe. Plant Physiol., 84, 748–752 (1987).

    Article  Google Scholar 

  24. P. A. Calatayud, E. Llovera, J. F. Bois, and T. Lamaze, Photosynthetica, 38, 97–104 (2000).

    Article  Google Scholar 

  25. J. Bresson, F. Vasseur, M. Dauzat, G. Koch, C. Granier, and D. Vile, Plant Methods, 11, 23 (2015); doi: https://doi.org/10.1186/s13007-015-0067-5.

    Article  Google Scholar 

  26. B. Ehlert and D. K. Hincha, Plant Methods, 4, 12 (2008).

    Article  Google Scholar 

  27. M. Zivcak, M. Brestic, K. Olsovska, and P. Slamka, Plant, Soil Environ., 54, No. 4, 133–139 (2008).

  28. A. N. Yushkov, N. V. Borzykh, and A. I. Butenko, J. Appl. Spectrosc., 83, No. 2, 302–306 (2016).

    Article  ADS  Google Scholar 

  29. U. Schreiber, in: Chlorophyll a Fluorescence: A Signature of Photosynthesis, G. C. Papageorgiou and Govindjee (Eds.), Springer, Dordrecht (2004), pp. 279–319.

  30. V. G. Leonchenko, R. P. Evseeva, E. V. Zhbanova, and T. A. Cherenkova, Preliminary Selection of Promising Genotypes of Fruit Plants for Environmental Resistance and Biochemical Value of Fruit [in Russian], Michurinsk (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Jushkov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, pp. 957–963, November– December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jushkov, A.N., Borzykh, N.V., Savelieva, N.N. et al. Chlorophyll Fluorescence Imaging in Fruit Plant Breeding for Resistance to Dehydration and Hyperthermia. J Appl Spectrosc 87, 1087–1093 (2021). https://doi.org/10.1007/s10812-021-01113-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01113-7

Keywords

Navigation