Skip to main content
Log in

Dipodal Molecular Device as Fluorescent Sensor for Na(I) Detection

  • Published:
Journal of Applied Spectroscopy Aims and scope

A novel dipodal fluorescent sensor, N1,N3-bis(2-(2,3,4-trihydroxybenzylidene)amino)ethylmalo namide (MEP), suitable for the practical measurement of sodium concentration has been successfully developed and characterized by several spectroscopic techniques. The design of the dipodal scaffold includes a central unit, spacer, and fluorophore moiety as structural key features. The fluorescence sensor MEP adopts a photoinduced electron transfer mechanism and shows excellent selectivity for Na(I) among other biologically and environmentally important metal ions, viz., Na(I), K(I), Al(III), Cr(III), Fe(III), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) in DMSO by demonstrating a remarkable enhancement in the fluorescence intensity from 345.5 to 705.5 a.u. at λmax = 532.9 nm. The 1:2 binding stoichiometry between the ligand and Na(I) ion was confirmed by Stern–Volmer and Hill plots. The association constant determined for the ligand with the sodium metal ion is found to be very high, 7.7 × 106 M–2, which may be attributed to the trapping of sodium ions into the pseudo cavities of the ligand created by interaction of the ligand and sodium ions. The studies explore potential applications of the ligand for Na(I) ions detection in environmental and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. de Silva, H. Q. Gunaratne, T. Gunnlaugsson, A. J. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Chem. Rev., 97, 1515–1566 (1997).

    Article  Google Scholar 

  2. J. F. Callan, A. P. de Silva, and D. C. Magri, Tetrahedron, 61, 8551–8588 (2005).

    Article  Google Scholar 

  3. А. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, and B. A. Grzybowski, Chem. Soc. Rev., 41, 19–30 (2012).

    Article  Google Scholar 

  4. R. Akbar, M. Baral, and B. K. Kanungo, J. Coord. Chem., 71, No. 1, 135–154 (2018).

    Article  Google Scholar 

  5. M. Baral, A. Gupta, R. Akbar, and B. K. Kanungo, J. Appl. Chem., 2016, 3757418/1–3757418/10 (2016).

    Article  Google Scholar 

  6. M. Baral, A. Gupta, and B. K. Kanungo, Spectrochim. Acta A, 162, 6–15 (2016).

    Article  ADS  Google Scholar 

  7. M. Burnier, Sodium in Health and Disease, Informa Healthcare, New York (2008).

    Google Scholar 

  8. The Na+, K+ Pump, Part B: Cellular Aspects, Eds. J. C. Skou, J. G. Norby, A. B. Maunsbach, M. Esmann, and A. R. Liss, Wiley, New York (1998).

  9. E. Murphy and D. A. Eisner, Circ. Res., 104, 292 (2009).

    Article  Google Scholar 

  10. D. M. Bers, W. H. Barry, and S. Despa, Cardiovasc. Res., 57, 897 (2003).

    Article  Google Scholar 

  11. T. R. Harring, N. S. Deal, and D. C. Kuo, Emerg. Med. Clin. North Am., 32, 379–401 (2014).

    Article  Google Scholar 

  12. Z. J. Twardowski, Hemodial. Int., 12, 412–425 (2008).

    Article  Google Scholar 

  13. A. Minta and R. Y. Tsien, J. Biol. Chem., 264, 19449 (1989).

    Google Scholar 

  14. Chemosensors of Ion and Molecule Recognition; NATO ASI Series, Eds. J. P. Desvergne, and A. W. Czarnik, Kluwer Academic, Dordrecht, The Netherlands (1996).

  15. O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors, II, CRC Press, Boca Raton, FL (1991).

  16. P. Gans, A. Sabatini, and A. Vacca, Talanta, 43, 1739–1753 (1996).

    Article  Google Scholar 

  17. P. Gans, A. Sabatini, and A. Vacca, Ann. Chim. (Rome), 89, 45–49 (1999).

    Google Scholar 

  18. S. K. Sahoo, S. E. Muthu, M. Baral, and B. K. Kanungo, Spectrochim. Acta A, 63, 574 (2006).

    Article  ADS  Google Scholar 

  19. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, 3rd ed., Chapman and Hall Ltd., London (1975).

    Book  Google Scholar 

  20. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds, 4th edn., Wiley, New York (1981).

    Google Scholar 

  21. Y. K. Tsui, S. Devaraj, and Y. P. Yen, Sens. Actuat. B: Chem., 161, 510–519 (2012).

    Article  Google Scholar 

  22. А. P. de Silva, H. Q. N. Gunaratne, J. L. Habib-Jiwan, C. P. McCoy, T. E. Rice, and J. P. Soumillion, Angew. Chem., Int. Ed. Engl., 34, 1728–1731 (1995).

    Article  Google Scholar 

  23. H. Huarui, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz, and J. K. Tusa, Anal. Chem., 75, 549–555 (2003).

    Article  Google Scholar 

  24. Graham R. C. Hamilton, Suban K. Sahoo, Sukanta Kamila, Narinder Singh, Navneet Kaur, Barry W. Hyland, and John F. Callan, Chem. Soc. Rev., 7, No. 44(13), 4415–4432 (2015).

  25. Y. M. Poronik, G. Clermont, M. Blanchard-Desce, and D. T. Gryko, J. Org. Chem., 78, No. 23, 11721–11732 (2013).

    Article  Google Scholar 

  26. Kundan Tayade, G. Krishna Chaitanya, Jasminder Singh, Narinder Singh, Sopan Ingle, Sanjay Attarde, and Anil Kuwar, J. Lumin., 154, 68–73 (2014).

    Article  Google Scholar 

  27. M. Everett, A. Jolleys, W. Levason, D. Pugh, and G. Reid, Chem. Commun., 50, 5843–5846 (2014).

    Article  Google Scholar 

  28. H. A. Benesi and J. H. Hilderbrand, J. Am. Chem. Soc., 71, 2703–2704 (1949).

    Article  Google Scholar 

  29. G. Kaur and N. Kaur, Sens Actuat. B: Chem., 265, 134–141 (2018).

    Article  Google Scholar 

  30. W. Caetano and M. Tabak, J. Colloid Interface Sci., 225, 69–81 (2000).

    Article  ADS  Google Scholar 

  31. Y.-J. Hua, Y. Liua, T.-Q. Sunb, A.-M. Bai, J.-Q. Lu, and Z.-B. Pi, Int. J. Biol. Macromol., 39, 280–285 (2006).

    Article  Google Scholar 

  32. H. W. Jun, L. A. Luzzi, and P. L. Hsu, J. Pharm. Sci., 61, No. 11, 1835–1837 (1972).

    Article  Google Scholar 

  33. X. Mei and C. Wolf, J. Am. Chem. Soc., 126, 14736–14737 (2004).

    Article  Google Scholar 

  34. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn., Springer, Berlin (2006).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baral.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 5, pp. 821–831, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dangi, V., Baral, M. & Kanungo, B.K. Dipodal Molecular Device as Fluorescent Sensor for Na(I) Detection. J Appl Spectrosc 87, 893–903 (2020). https://doi.org/10.1007/s10812-020-01086-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01086-z

Keywords

Navigation