Skip to main content
Log in

Study of Reducing Destruction of Lignin by FT-IR Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Lignin preparations were obtained from harsh flax fiber and material exposed to an alkaline solution of sodium borohydride using the Bjerkman extraction method. Peaks of individual vibrations of all types of covalent bonds in the functional groups of the biopolymer were identified. The mechanism of lignin destruction induced by destabilization of the ether bond adjacent to the carbonyl being reduced in the propane link of the macromolecule was confirmed. Reduction of the carbonyl was accompanied by a doubling of the intensity of the absorption band of alkyl hydroxyls and a fourfold increase in the number of hydroxyaryl groups, which was indicative of the accumulation of structural units in the free phenolic form in the system. The dynamics of structural transformations were compared. The duration of serial-parallel processes of polymer reduction and destruction was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-Ch. Liu, J.-S. Wang, K.-L. Huang, and W. Xu, Polym. Bull., 64, 159–169 (2010); https://doi.org/10.1007/s00289-009-0150-z.

    Article  Google Scholar 

  2. A. S. Orlov, S. A. Kiselev, E. A. Kiseleva, A. V. Budeeva, and V. I. Mashukov, J. Appl. Spectrosc., 80, 47–53 (2013).

    Article  ADS  Google Scholar 

  3. V. T. Shashkova, I. A. Matveeva, N. N. Glagolev, T. S. Zarkhina, P. S. Timashev, V. N. Bagratashvili, and A. V. Solov’eva, Russ. J. Phys. Chem. A, 90, No. 10, 1925–1930 (2016); https://doi.org/10.1134/S0036024416100241.

  4. N. V. Losev, T. E. Nikiforova, L. I. Makarova, and I. M. Lipatova, Prot. Met. Phys Chem. Surf., 53, No. 5, 801–806 (2017); https://doi.org/10.1134/S2070205117040141.

    Article  Google Scholar 

  5. M. V. Konycheva, V. G. Stokozenko, Yu. V. Titova, and A. P. Moryganov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 53, No. 6, 82–86 (2010); https://elibrary.ru/download/elibrary_15125885_51481301.pdf [https://www.elibrary.ru/item.asp?id=15125885].

  6. O. Yu. Derkacheva and O. Y. Derkacheva, J. Appl. Spectrosc., 80, No. 5, 670–676 (2013).

    Article  ADS  Google Scholar 

  7. N. G. Bazarnova (Ed.), Study Methods for Wood and Its Derivatives [in Russian], AGU, Barnaul (2002).

  8. E. L. Akim, Fibre Chem., 48, No. 3, 181–190 (2016); https://doi.org/10.1007/s10692-016-9765-7.

    Article  Google Scholar 

  9. C. Zhou, W. Jiang, B. K. Via, O. Fasina, and G. Han, Carbohydr. Polym., 121, 336–341 (2015); https://doi.org/10.1016/j.carbpol.2014.11.062.

    Article  Google Scholar 

  10. Y. Nordstrom, J. Norberg, E. Sjoholm, and R. Drougge, J. Appl. Polym. Sci., 129, 1274–1279 (2013); https://doi.org/10.1002/app.38795.

    Article  Google Scholar 

  11. M. M. Hossain, I. M. Scott, B. D. McGarvey, K. Conn, L. Ferrante, F. Berruti, and C. Briens, J. Pestic. Sci., 88, 171–179 (2015); https://doi.org/10.1007/s10340-014-0568-4.

    Article  Google Scholar 

  12. I. A. Gilca, R. E. Ghitescu, A. C. Puitel, and V. I. Popa, Iran. Polym. J., 23, 355–363 (2014); https://doi.org/10.1007/s13726-014-0232-0.

    Article  Google Scholar 

  13. M. Lallave, J. Bedia, R. Ruiz-Rosas, J. Rodriguez-Mirsaol, T. Cordero, J. C. Otero, M. Marquez, A. Barrero, and I. G. Loscertales, Adv. Mater., 19, 4292–4296 (2007); https://doi.org/10.1002/adma.200700963.

    Article  Google Scholar 

  14. Yu. Ge and Zh. Li, ACS Sustainable Chem. Eng., 65, 7181–7192 (2018); https://doi.org/10.1021/acssuschemeng.8b01345.

  15. S. A. Koksharov, S. V. Aleeva, and O. V. Lepilova, Autex Res. J., 15, No. 3, 215–225 (2015); https://doi.org/10.1515/aut-2015-0003.

    Article  Google Scholar 

  16. S. V. Aleeva and S. A. Koksharov, Russ. J. Gen. Chem., 82, No. 13, 2279–2293 (2012); https://doi.org/10.1134/S1070363212130154.

    Article  Google Scholar 

  17. S. A. Koksharov, S. V. Aleeva, and O. V. Lepilova, Int. J. Chem. Eng., 2019, 1–11 (2019); https://doi.org/10.1155/2019/4137593.

    Article  Google Scholar 

  18. O. V. Lepilova, S. Spigno, S. V. Aleeva, and S. A. Koksharov, Eurasian Chem.-Technol. J., 19, No. 1, 31–40 (2017); https://doi.org/10.18321/ectj500.

  19. B. Jiang, Yu. Zhang, T. Guo, H. Zhao, and Y. Jin, Polymers, 10, 736 (2018); https://doi.org/10.3390/polym10070736.

    Article  Google Scholar 

  20. C. G. Boeriu, D. Bravo, R. J. A. Gosselink, and J. E. G. van Dam, Ind. Crops Prod., 20, 205–218 (2004); https://doi.org/10.1016/j.indcrop.2004.04.022.

    Article  Google Scholar 

  21. E. Pretsch, P. Buhlmann, and M. Badertscher, Structure Determination of Organic Compounds, Springer Verlag, Berlin, Heidelberg (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Aleeva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 5, pp. 694–699, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleeva, S.V., Lepilova, O.V. & Koksharov, S.A. Study of Reducing Destruction of Lignin by FT-IR Spectroscopy. J Appl Spectrosc 87, 779–783 (2020). https://doi.org/10.1007/s10812-020-01069-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01069-0

Keywords

Navigation