Investigation of Structural Phase Conversions of an Iron-Containing Catalyst by Mossbauer Spectroscopy (Part 1)

The active form of an iron-containing catalyst including mixed Fe(II, III) oxides for refi ning Ashal′cha heavy oil was investigated using Mossbauer spectroscopy to establish the formation mechanism. The iron-oxide phase is involved during the formation process in the cleavage of carbon-heteroatom bonds in asphaltene and resin fractions of heavy oil and decreases their molecular masses. The disperse iron oxides are enriched in a sulfur-containing phase. The conversion degree of the compounds increases as the duration of the experiment increases, which indicates that the disperse iron compounds participate multiple times in the cleavage of chemical bonds. Results of Mossbauer spectroscopy indicate that maghemite is reduced to magnetite when the iron oxides react with water vapor during the catalytic aquathermolysis of crude oil at 250°C.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. P. Yakutseni, E. Yu. Petrov, and A. A. Sukhanov, Neftegazov. Geol. Teor. Prakt., No. 1, 1–11 (2007).

    Google Scholar 

  2. 2.

    R. S. Khisamov, N. S. Gatiyatullin, and I. E. Shargorodskii, Geology and Development of Natural Bitumen Deposits of the Republic of Tatarstan [in Russian], Fen, Kazan (2007).

  3. 3.

    A. A. Lipaev, Development of Heavy Oil and Natural Bitumen Deposits [in Russian], Institut Komp′yuternykh Issledovanii, Izhevsk (2013).

    Google Scholar 

  4. 4.

    G. P. Kayukova, S. M. Petrov, and B. V. Uspenskii, Properties of Heavy Oils and Bitumens of Perm Deposits of Tatarstan in Natural and Technogenic Processes [in Russian], GEOS, Moscow (2014).

    Google Scholar 

  5. 5.

    S. Maity, J. Ancheyta, and G. Marroqum, Energy Fuels, 24, 2809–2816 (2010).

    Article  Google Scholar 

  6. 6.

    O. Muraza and A. Galadima, Fuel, 157, 219–231 (2015).

    Article  Google Scholar 

  7. 7.

    A. M. Kiyamova, G. P. Kayukova, and V. I. Morozov, Tekhnol. Nefti Gaza, 1, 40–47 (2007).

    Google Scholar 

  8. 8.

    J. G. Weissman, Fuel Process. Technol., 50, 199–213 (1997).

    Article  Google Scholar 

  9. 9.

    A. N. Cavallaro, G. R. Galliano, and R. G. Moore, J. Can. Pet. Technol., 47, 23–31 (2008).

    Google Scholar 

  10. 10.

    A. Pereira, Can. J. Chem. Eng., 90, 320–329 (2012).

    Article  Google Scholar 

  11. 11.

    S. A. Sitnov, I. I. Mukhamatdinov, E. I. Shmeleva, F. A. Aliev, and A. V. Vakhin, Pet. Sci. Technol., 37, No. 8, 971–976 (2019).

    Article  Google Scholar 

  12. 12.

    S. A. Sitnov, A. V. Vakhin, I. I. Mukhamatdinov, Yu. V. Onishchenko, and D. A. Feoktistov, Pet. Sci. Technol., 37, No. 6, 687–693 (2019).

    Article  Google Scholar 

  13. 13.

    I. I. Mukhamatdinov, I. Sh. S. Salih, I. Z. Rakhmatullin, S. A. Sitnov, A. V. Laikov, V. V. Klochkov, and A. V. Vakhin, J. Pet. Sci. Eng., 181, No. 9 (2019) [186 (2020)].

  14. 14.

    I. I. Mukhamatdinov, I. Sh. S. Salih, and A. V. Vakhin, Pet. Sci. Technol., 37, No. 13, 1589–1595 (2019).

    Article  Google Scholar 

  15. 15.

    J. G. Stevens, A. M. Khasanov, J. W. Miller, H. Pollak, and Z. Li, Mossbauer Mineral Handbook, The University of North Carolina at Asheville, North Carolina (1998).

    Google Scholar 

  16. 16.

    M. D. F. F. Lelis, J. D. Fabris, W. D. N. Mussel, and A. Y. Takeuchi, Mater. Res., 6, No. 2, 145–150 (2003).

    Article  Google Scholar 

  17. 17.

    R. Valenzuela, J. A. Garcia, S. Aburto, M. L. Marquina, and M. Jimemez. J. Phys. Colloq., 38, No. C1, 139–140 (1977).

    Google Scholar 

  18. 18.

    M. A. F. Ramalho, L. Gama, and S. G. Antonio, J. Mater. Sci., 42, No. 10, 3603–3606 (2007).

    ADS  Article  Google Scholar 

  19. 19.

    B. Randhawa, R. Kaur, and K. Sweety, J. Radioanal. Nucl. Chem., 220, No. 2, 271–273 (1997).

    Article  Google Scholar 

  20. 20.

    D. Amara, I. Felner, I. Nowik, and S. Margel, Colloid Surf, A, 339, 106–100 (2009).

    Google Scholar 

  21. 21.

    U. Klekotka, D. Satula, P. Nordblad, and B. Kalska-Szostko, Arabian J. Chem., 13, No. 1, 1323–1334 (2020).

    Article  Google Scholar 

  22. 22.

    B. Kalska-Szostko, U. Wykowska, D. Satula, and P. Nordblad, Beilstein J. Nanotechnol., 6, No. 1, 1385–1396 (2015).

    Article  Google Scholar 

  23. 23.

    S. A. Sitnov, I. I. Mukhamatdinov, A. V. Vakhin, V. E. Katnov, D. K. Nurgaliev, M. R. Lyabipov, and M. I. Amerkhanov, Method for Obtaining Nanoscale Catalyst Based on Mixed Iron Oxide for Intensifi cation of Heavy Raw Hydrocarbon Material and Catalyst Obtained by This Method, RU Pat. 2,655,391, IPC 2017.01, May 28, 2018.

  24. 24.

    I. I. Mukhamatdinov, A. V. Vakhin, S. A. Sitnov, A. R. Khaidarova, R. D. Zaripova, E. I. Garifullina, V. E. Katnov, and S. N. Stepin, Chem. Technol. Fuels Oils, 54, No. 5, 574–580 (2018).

    Article  Google Scholar 

  25. 25.

    I. I. Mukhamatdinov, A. R. Khaidarova, R. D. Zaripova, R. E. Mukhamatdinova, S. A. Sitnov, and A. V. Vakhin, Catalysts, 10, No. 1 (2020).

  26. 26.

    V. S. Rusakov, Principles of Mossbauer Spectroscopy [in Russian], MGU, Moscow (2011).

    Google Scholar 

  27. 27.

    A. G. Ivanova, A. V. Vakhin, E. V. Voronina, A. V. Pyataev, D. K. Nurgaliev, and S. A. Sitnov, Izv. Ross. Akad. Nauk, Ser. Fiz., 81, No. 7, 904–908 (2017).

    Google Scholar 

  28. 28.

    M. R. Spender, J. M. D. Coey, and A. H. Morrish, Can. J. Phys., 50, No. 19, 2313–2326 (1972).

    ADS  Article  Google Scholar 

  29. 29.

    B. N. Kuznetsov, Deep Refi ning of Brown Coals to Produce Liquid Fuels and Carbon Materials [in Russian], Geo, Novosibirsk (2012).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. I. Mukhamatdinov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 4, pp. 623–627, July–August, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khaidarova, A.R., Pyataev, A.V., Mukhamatdinov, I.I. et al. Investigation of Structural Phase Conversions of an Iron-Containing Catalyst by Mossbauer Spectroscopy (Part 1). J Appl Spectrosc 87, 680–684 (2020). https://doi.org/10.1007/s10812-020-01054-7

Download citation

Keywords

  • catalyst
  • iron oxide
  • aquathermolysis
  • heavy crude oil
  • Mossbauer spectroscopy