Skip to main content
Log in

Ultrasensitive Fluorescence Determination of 6-Thioguanine in Biological Samples Based on the Silver Nanoparticle-Mediated Release of Acridine Orange Probe

  • Published:
Journal of Applied Spectroscopy Aims and scope

This article reports a simple, convenient, and very sensitive method for the determination of 6-thio guanine (6-TG). The basic phenomenon in the proposed method is fluorescence resonance energy transfer, where acridine orange (AO) act as a donor and citrate-stabilized silver nanoparticles (AgNPs) as an acceptor. A noncovalent bond between the surfaces of AgNPs and AO was found, and the effect of fluorescence quenching was observed. The fluorescence spectra of AO recovered after further addition of 6-TG are responsible for the aggregation of AgNPs. Under ideal conditions, the linear relationship of 6-TG in the concentration range of 0.005 to 0.04 μM was displayed, and the limit of detection of 6-TG was obtained as 5.3 nM. Under ideal conditions, the linear relationship of 6-TG was displayed in the concentration range of 0.005 to 0.04 μM, and the limit of detection of 6-TG was obtained as 5.3 nM. The proposed method offers a rapid analysis to determine 6-TG in human serum, blood, and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. P. Huynh, A. Wojnarowicz, M. Sosnowska, S. Srebnik, T. Benincori, F. Sannicolo, F. D’Souza, and W. Kutner, Biosens. Bioelectron, 70, 153–160 (2015).

    Article  Google Scholar 

  2. A. A. Ensafi and H. Karimi-Maleh, J. Electroanal. Chem., 640, 75–83 (2010).

    Article  Google Scholar 

  3. Munshi, N. Pashna, M. Lubin, and J. R. Bertino, Oncologist,19, 760–765 (2014).

    Article  Google Scholar 

  4. H. Beitollahi, S. G. Ivari, and M. T. Mahani, Mater. Sci. Eng. C, 69, 128–133 (2016).

    Article  Google Scholar 

  5. Q. Gueranger, F. Li, M. Peacock, A. Larnicol-Fery, R. Brem, P. Macpherson, J. M. Egly, and P. Karran, J. Invest. Dermatol., 134, 1408–1417 (2014).

    Article  Google Scholar 

  6. M. T. Osterman, R. Kundu, G. R. Lichtenstein, and J. D. Lewis, Gastroenterology, 130, 1047–1053 (2006).

    Article  Google Scholar 

  7. R. Zakrzewski, J. Anal. Chem., 64, 1235–1241 (2009).

    Article  Google Scholar 

  8. B. B. Prasad, R. Singh, and A. Kumar, Carbon, 102, 86–96 (2016).

    Article  Google Scholar 

  9. U. Hindorf, M. Lindqvist, C. Peterson, P. Soderkvist, M. Strom, and H. Hjortswang, Inflamm. Bowel Dis., 55, 1423–1431 (2006).

    Google Scholar 

  10. G. Cangemi, A. Barabino, S. Barco, A. Parodi, S. Arrigo, and G. Melioli, Int. J. Immunopathol. Pharmacol., 25, 435–444 (2012).

    Article  Google Scholar 

  11. H. Li, X. Chong, Y. Chen, L. Yang, L. Luo, B. Zhao, and Y. Tian, Colloids Surf. A, 493, 52–58 (2016).

    Article  Google Scholar 

  12. Jacobsen, J. H. Schmiegelow, and K. Nersting, J. Chromatogr. B, 881882, 115–118 (2012).

  13. S. A. Coultharda, P. Berry, S. McGarrity, A. Ansari, and Christopher P. F. Redfern, J. Chromatogr. B, 1028, 175–180 (2016).

    Article  Google Scholar 

  14. N. Bi, M. Hu, H. Zhu, H. Qi, Y. Tian, and Hanqi Zhang, Spectrochim. Acta A, 107, 4–30 (2013).

    Article  ADS  Google Scholar 

  15. X. Y. Deng, Y. Tang, L. H. Wu, L. J. Liu, X. Wang, Y. H. Chen, H. Q. Zhang, and Y. Tian, Chin. J. Anal. Chem., 37, 79 (2009).

    Google Scholar 

  16. P. D. Tzanavaras, D. G. Themelis, and A. Economou, Anal. Chim. Acta, 505, 167–171 (2004).

    Article  Google Scholar 

  17. W. Wang, S. F. Wang, and F. Xie, Sens. Actuat. B, 120, 238–244 (2016).

    Article  Google Scholar 

  18. M. Amjadi and L. Farzampour, J. Lumin., 29, 689 (2014).

    Article  Google Scholar 

  19. E. Mozioglu, M. Akgoz, T. Kocagoz, and C. Tamerler, Anal. Methods, 8, 4017–4021 (2016).

    Article  Google Scholar 

  20. Shi, Jingyu, F. Tian, J. Lyu, and M. Yang, J. Mater. Chem. B, 35, 6989–7005 (2015).

    Article  Google Scholar 

  21. J. N. Miller, Analyst, 130, 265–270 (2005).

    Article  ADS  Google Scholar 

  22. P. Blaszkiewicz, M. Kotkowiak, and A. Dudkowiak, J. Lumin., 183, 303–310 (2017).

    Article  Google Scholar 

  23. Y. Chen, L. Chen, Y. Ou, L. Guo, and F. Fu, Sens. Actuat. B: Chem., 233, 691–696 (2016).

    Article  Google Scholar 

  24. Y. L. Xu, X. Y. Niu, H. J. Zhang, L. F. Xu, S. G. Zhao, H. L. Chen, and X. G. Chen, J. Agric. Food Chem., 63, 1747–1755 (2015).

    Article  Google Scholar 

  25. F. Gao, Q. Ye, P. Cui, X. Chen, M. Li, L. Wang. Anal. Methods, 3, 1180–1185 (2011).

    Article  Google Scholar 

  26. K. H. Lee, S. J. Chen, J. Y. Jeng, Y. C. Cheng, J. T. Shiea, and H. T. Chang, Colloid Interface Sci., 307, 340 (2007).

    Article  ADS  Google Scholar 

  27. P. Liu, Y. Zhou, M. Guo, and S. Yang, Nanoscale, 10, 848–855 (2018).

    Article  Google Scholar 

  28. N. Y. Chena, H. F. Lia, Z. F. Gaoa, F. Qub, N. B. Lia, and H. Q. Luoa, Sens. Actuat. B: Chem., 193, 730–736 (2014).

    Article  Google Scholar 

  29. W. Leesutthiphonchai, W. Dungchai, W. Siangproh, N. Ngamrojnavanich, and O. Chailapakul, Talanta, 85, 870–876 (2011).

    Article  Google Scholar 

  30. U. P. Raghavendra, J. Thipperudrappa, M. Basanagouda, and R. M. Melavanki, J. Lumin., 172, 139–146 (2016).

    Article  Google Scholar 

  31. L. Farzampour and M. Amjadi, J. Lumin., 155, 226–230 (2014).

    Article  Google Scholar 

  32. S. Qadri, A. Ganoe, and Y. Haik, J. Hazard. Mater., 169, 318–323 (2009).

    Google Scholar 

  33. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer, New York (1999).

    Book  Google Scholar 

  34. G. L. Wang, W. M. Dong, X. Y. Zhu, W. J. Zhang, C. Wang, and H. J. Jiao, Analyst, 136, 5256–5260 (2011).

    Article  ADS  Google Scholar 

  35. H. C. Dai, Y. Shi, Y. L. Wang, Y. J. Sun, J. T. Hu, and P. J. Ni, Sens. Actuat. B: Chem., 202, 201–208 (2014).

    Article  Google Scholar 

  36. A. M. E. Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat, Environ. Sci. Technol., 44, 1260–1266 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tapadia.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, p. 345, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V.K., Tapadia, K., Maharana, T. et al. Ultrasensitive Fluorescence Determination of 6-Thioguanine in Biological Samples Based on the Silver Nanoparticle-Mediated Release of Acridine Orange Probe. J Appl Spectrosc 87, 357–363 (2020). https://doi.org/10.1007/s10812-020-01007-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01007-0

Keywords

Navigation