Skip to main content
Log in

Optimization of Operational Conditions for Scandium Determination in Aluminum Alloys by Inductively Coupled Plasma Optical Emission Spectrometry

  • Published:
Journal of Applied Spectroscopy Aims and scope

A method for the determination of scandium (Sc) in aluminum alloy samples by inductively coupled plasma optical emission spectrometry was developed. The method was optimized by the Box–Behnken design, which evaluated the operational conditions (radio frequency power, nebulizer gas flow rate, and sample flow rate). The optimum conditions were established as a radio frequency power of 1300 W, a nebulizer gas flow rate of 0.83 L/min, and a sample flow rate of 0.9 mL/min. Satisfactory performance characteristics (background equivalent concentration, limits of detection and quantification) were obtained under the optimum conditions. The method proposed using the optimum conditions allowed Sc determination with limits of detection and quantification of 0.15 and 0.48 μg/L, respectively. The accuracy of the proposed method was confirmed by analyzing an aluminum alloy certified reference material and performing a standard addition method. The standard addition experiments resulted in recoveries between 96.5% and 105%. The method developed has been applied to the Sc determination in aluminum alloy samples from the Beijing Institute of Aeronautical Materials, and the recovery study results ranged between 98.0 and 100.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Sun, G. L. Nash, Q. Li, E. Liu, C. He, C. Shi, and N. Zhao, J. Mater. Sci. Technol., 33, 1015–1022 (2017).

    Google Scholar 

  2. S. Zivkovic, J. Savovic, M. Trtica, J. Mutic, and M. Momcilovic, J. Alloys Compd., 700, 175–184 (2017).

    Article  Google Scholar 

  3. G. Li, N. Q. Zhao, T. Liu, J. J. Li, C. N. He, C. S. Shi, E. Z. Liu, and J. W. Sha, Mater. Sci. Eng. A, 617, 219–227 (2014).

    Article  Google Scholar 

  4. V. Senkova, O. N. Senkov, and D. B. Miracle, Met. Mater. Trans. A Phys. Met. Mater. Sci., 37, 3569–3575 (2006).

  5. M. Zhang, T. Liu, C. He, J. Ding, E. Liu, C. Shi, J. Li, and Naiqin, J. Alloys Compd., 658, 946–951 (2016).

  6. H.-R. Stock, B. Köhler, H. Bomas, and H.-W. Zoch, Mater. Des., 31, S76–S81 (2010).

    Article  Google Scholar 

  7. R. E. S. Froes, W. B. Neto, R. L. P. Naveira, N. C. Silva, C. C. Nascentes, and J. B. B. da Silva, Microchem. J., 92, 68–72 (2009).

    Article  Google Scholar 

  8. T. Grigoletto, E. de Oliveira, and I. G. R. Gutz, Talanta, 67, 791–797 (2005).

    Article  Google Scholar 

  9. A. Muhammad, C. Xu, W. Xuejiao, S. Hanada, H. Yamagata, L. Hao, and M. Chaoli, Mater. Sci. A: Struct. Mater., 604, 122–126 (2014).

    Article  Google Scholar 

  10. M. de O. Souza, M. A. Ribeiro, M. T. W. D. Carneiro, G. P. B. Athaude, E. V. R. de Castro, F. L. E. da Silva, and W. O. Matos, Fuel, 154, 181–187 (2015).

  11. K. Satyanarayana, S. Durani, and G. V. Ramanaiah, Anal. Chim. Acta, 376, 273–281 (1998).

    Article  Google Scholar 

  12. J. Połedniok, Chemosphere, 73, 572–579 (2008).

    Article  ADS  Google Scholar 

  13. N. Carrion, A. M. Itriago, M. A. Alvarez, and E. Eljuri, Talanta, 61, 621–632 (2003).

    Article  Google Scholar 

  14. T. Grigoletto, E. de Oliveira, and I. G. R. Gutz, Talanta, 67, 791–797 (2005).

    Article  Google Scholar 

  15. Y. Shi, Q. Pan, M. Li, X. Huang, and B. Li, Mater. Sci. A: Struct. Mater., 621, 173–181 (2015).

    Article  Google Scholar 

  16. A. K. G. Silva, J. C. de Lena, R. E. S. Froes, L. M. Costa, and C. C. Nascentes, J. Braz. Chem. Soc., 23, 753–762 (2012).

    Google Scholar 

  17. F. A. de Santana, J. T. P. Barbosa, G. D. Matos, M. G. A. Korn, and S. L. C. Ferreira, Microchem. J., 110, 198–201 (2013).

    Article  Google Scholar 

  18. M. T. Larrea, B. Zaldivar, J. C. Farinas, L. G. Firgaira, and M. Pomares, J. Anal. At. Spectrom., 23, 145–151 (2008).

    Article  Google Scholar 

  19. C. G. Novaes, M. A. Bezerra, E. G. P. de Silva, A. M. P. Santos, I. L. S. da Romao, and J. H. S. Neto, Microchem. J., 128, 331–346 (2016).

    Article  Google Scholar 

  20. R. F. de Oliveira, C. C. Windmoller, W. B. Neto, C. C. Souza, M. A. Beinner, and J. B. B. Silva, Anal. Method., 5, 5746–5752 (2013).

    Article  Google Scholar 

  21. N. M. L. Araujo, S. L. C. Ferreira, H. C. Santos, D. S. Jesus, and M. A. Bezerra, Anal. Methods, 4, 508–512 (2012).

    Article  Google Scholar 

  22. M. Khajeh, J. Hazard Mater., 172, 385–389 (2009).

    Article  Google Scholar 

  23. M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, Talanta, 76, 965–977 (2008).

    Article  Google Scholar 

  24. M. de O. Souza, K. P. Rainha, E. V. R. Castro, M. T. W. D. Carneiro, and R. D. Q. Ferreira, Quim. Nova, 38, 980–986 (2015).

  25. G. Vanini, M. O. Souza, M. T. W. D. Carneiro, P. R. Filgueiras, R. E. Bruns, and W. Romao, Microchem. J., 120, 58–63 (2015).

    Article  Google Scholar 

  26. C. G. Novaes, S. L. C. Ferreira, J. H. S. Neto, F. A. de Santana, L. A. Portugal, and H. C. Goicoechea, Curr. Anal. Chem., 12, 1–8 (2016).

    Article  Google Scholar 

  27. S. L. R. Ellison and A. Williams, Comparison of a Measurement Result with the Certifi ed Value, Eurachem/CITAC Guide, ISBN 978–0–948926–30–3 (2012).

  28. R. E. S. Froes, W. B. Neto, N. O. C. Silva, R. L. P. Naveira, C. C. Nascentes, and J. B. B. da Silva, Spectrochim. Acta, B: At. Spectrosc., 64, 619–622 (2009).

    Article  ADS  Google Scholar 

  29. J. C. Farinas, I. Rucandio, M. S. P. Alfonso, M. E. V. Tagle, and M. T. Larrea, Talanta, 154, 53–62 (2016).

    Article  Google Scholar 

  30. J. S. Santos, L. S. G. Teixeira, R. G. O. Araujo, A P. Fernandes, M. G. A. Korn, and S. L. C. Ferreira, Microchem. J., 97, 113–117 (2011).

  31. P. N. Nomngongo, J. C. Ngila, T. A. M. Msagati, and B. Moodley, Microchem. J., 114, 141–147 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ningxin.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 314–321, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ningxin, G. Optimization of Operational Conditions for Scandium Determination in Aluminum Alloys by Inductively Coupled Plasma Optical Emission Spectrometry. J Appl Spectrosc 87, 326–332 (2020). https://doi.org/10.1007/s10812-020-01003-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01003-4

Keywords

Navigation