Skip to main content
Log in

Flexible Sers-Active Substrates Based on Silver Nanoparticles Grown in Poly(Acrylic Acid) Grafted to a Polypropylene Film

  • Published:
Journal of Applied Spectroscopy Aims and scope

Flexible SERS substrates were obtained by the photo-activated synthesis of silver nanoparticles in a thin (10–170 nm) layer of poly(acrylic acid) chemically grafted to the surface of a polypropylene fi lm. The plasmonic absorption and the SERS activity of the substrates were studied as a function of the thickness of the grafted layer for a fixed time of nanoparticle synthesis. The results indicate dense three-dimensional packing of plasmonic nanoparticles in the grafted polymer layer. The substrates have a storage-stable and surface-uniform SERS activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett., 78, 1667–1670 (1997).

    Article  ADS  Google Scholar 

  2. K. A. Willets and R. P. Van Duyne, Ann. Rev. Phys. Chem., 58, 267–297 (2007).

    Article  ADS  Google Scholar 

  3. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Ann. Rev. Anal. Chem., 1, 601–626 (2008).

    Article  Google Scholar 

  4. F. J. García-Vidal and J. B. Pendry, Phys. Rev. Lett., 77, No. 6, 1163–1166 (1996).

    Article  ADS  Google Scholar 

  5. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Phys. Rev. Lett., 83, No. 21, 4357–4360 (1999).

    Article  ADS  Google Scholar 

  6. J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, J. Am. Chem. Soc., 130, No. 38, 12616–12617 (2008).

    Article  Google Scholar 

  7. Y. Fang, N. H. Seong, and D. D. Dlott, Science, 321, No. 5887, 388–392 (2008).

    Article  ADS  Google Scholar 

  8. S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, Nat. Rev. Mater., 1, 16021 (2016).

    Article  ADS  Google Scholar 

  9. S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, Chem. Soc. Rev., 46, No. 13, 4042–4076 (2017).

    Article  Google Scholar 

  10. Y. J. Oh and K. H. Jeong, Adv. Mater., 24, No. 17, 2234–2237 (2012).

    Article  Google Scholar 

  11. M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, Adv. Mater., 26, No. 15, 2353–2358 (2014).

    Article  Google Scholar 

  12. S. Mühlig, D. Cialla, A. Cunningham, A. März, K. Weber, T. Bürgi, F. Lederer, and C. Rockstuhl, J. Phys. Chem. C, 118, No. 19, 10230–10237 (2014).

    Article  Google Scholar 

  13. Z. Liu and Z. Yan, L. Bai. Appl. Surf. Sci., 360, 437–441 (2016).

    Article  ADS  Google Scholar 

  14. W. L. Chen, R. Cordero, H. Tran, and C. K. Ober, Macromolecules, 50, No. 11, 4089–4113 (2017).

    Article  ADS  Google Scholar 

  15. S. Gupta, M. Agrawal, M. Conrad, N. A. Hutter, P. Olk, F. Simon, L. M. Eng, M. Stamm, and R. Jordan, Adv. Funct. Mater., 20, No. 11, 1756–1761 (2010).

    Article  Google Scholar 

  16. Y. Yang, W. Wang, T. Chen, and Z. R. Chen, ACS Appl. Mater. Inter., 6, No. 23, 21468–21473 (2014).

    Article  Google Scholar 

  17. G. Xing, K. Wang, P. Li, W. Wang, and T. Chen, Nanotechnology, 29, No. 11, 115503 (2018).

    Article  ADS  Google Scholar 

  18. K. Xu, R. Zhou, K. Takei, and M. Hong, Adv. Sci., 6, No. 16, 1900925 (2019).

    Article  Google Scholar 

  19. S. Kumar, P. Goel, and J. P. Singh, Sensors Actuat. B: Chem., 241, 577–583 (2017).

    Article  Google Scholar 

  20. Z. Li, M. Wang, Y. Jiao, A. Liu, S. Wang, C. Zhang, C. Yang, Y. Xu, C. Li, and B. Man, Sensors Actuat. B: Chem., 255, 374–383 (2018).

    Article  Google Scholar 

  21. Z. Li, G. Meng, Q. Huang, X. Hu, X. He, H. Tang, Z. Wang, and F. Li, Small, 11, No. 40, 5452–5459 (2015).

    Article  Google Scholar 

  22. L. B. Zhong, Q. Liu, P. Wu, Q. F. Niu, H. Zhang, and Y. M. Zheng, Environ. Sci. Technol., 52, No. 10, 5812–5820 (2018).

    Article  ADS  Google Scholar 

  23. C. Zong, M. Ge, H. Pan, J. Wang, X. Nie, Q. Zhang, W. Zhao, X. Liu, and Y. Yu, RSC Adv., 9, No. 5, 2857–2864 (2019).

    Article  Google Scholar 

  24. O. N. Tretinnikov, V. V. Pilipenko, and L. K. Prikhodchenko, Polymer Sci., Ser. B, 54, Nos. 9–10, 427–433 (2012).

  25. A. A. Gorbachev, O. N. Tretinnikov, L. V. Shkrabatovskaya, and L. K. Prikhodchenko, Zh. Prikl. Spektrosk., 81, No. 5, 683–686 (2014) [A. A. Gorbachev, O. N. Tretinnikov, L. V. Shkrabatovskaya, and L. K. Prikhodchenko, J. Appl. Spectrosc., 81, No. 5, 754–757 (2014)]

  26. B. Rånby, W. T. Yang, and O. Tretinnikov, Nucl. Instrum. Method. B, 151, 301–305 (1999).

    Article  ADS  Google Scholar 

  27. M. Ulbricht, React. Funct. Polym., 31, 165–177 (1996).

    Article  Google Scholar 

  28. B. Gupta, C. Plummer, I. Bisson, P. Frey, and J. Hilborn, Biomaterials, 23, No. 3, 863–871 (2002).

    Article  Google Scholar 

  29. M. Dauben, K. H. Reichert, P. Huang, and J. Fock, Polymer, 37, No. 13, 2827–2830 (1996).

    Article  Google Scholar 

  30. P. Gilles, F. Touchard, D. Duchene, and N. A. Peppas, J. Control. Release, 5, No. 2, 129–141 (1987).

    Article  Google Scholar 

  31. M. Liu, R. Xiang, Y. Lee, K. Otsuka, Y. L. Ho, T. Inoue, and S. Maruyama, Nanoscale, 10, No. 12, 5449–5456 (2018).

    Article  Google Scholar 

  32. X. Li, J. Li, X. Zhou, Y. Ma, Z. Zheng, X. Duan, and Y. Qu, Carbon, 66, 713–719 (2014).

    Article  Google Scholar 

  33. L. Ma, Y. Huang, M. Hou, Z. Xie, and Z. Zhang, Sci. Rep., 5, 12890 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Tretinnikov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 233–239, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachev, A.A., Khodasevich, I.A. & Tretinnikov, O.N. Flexible Sers-Active Substrates Based on Silver Nanoparticles Grown in Poly(Acrylic Acid) Grafted to a Polypropylene Film. J Appl Spectrosc 87, 249–255 (2020). https://doi.org/10.1007/s10812-020-00992-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00992-6

Keywords

Navigation