Skip to main content
Log in

Photoluminescence of Nominally Pure Lithium Niobate Single Crystals Produced by Various Technologies

  • Published:
Journal of Applied Spectroscopy Aims and scope

Volume and surface photoluminescence of congruent and stoichiometric lithium niobate crystals obtained using various technologies was studied. The luminescence intensity of the stoichiometric crystal was less than that of the congruent one. Volume luminescence of the crystals was mainly caused by NbLi defects while luminescence quenching of the near-surface layer was observed in the long-wavelength spectral region (>500 nm) because of energy scattering in crystal-lattice vibrations and increased luminescence intensity of the \( {\mathrm{Nb}}_{\mathrm{Nb}}^{4+}-{\mathrm{O}}^{-} \) pair. Luminescence bands with maxima at 426 and 446 nm were caused by complex defects in the form of electron–hole pairs \( {\mathrm{Nb}}_{\mathrm{Nb}}^{4+}-{\mathrm{O}}^{-} \) in which the Nb atom was bound to oxygen atoms by covalent and ionic bonds. An increase of the Li/Nb ratio led to a shift of the luminescence bands to shorter wavelengths and a change of the fundamental absorption edge of the studied crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Abrahams and P. Marsh, Acta Crystallogr., Sect. B: Struct. Sci., 42, 61–68 (1986).

    Google Scholar 

  2. Yu. S. Kuz’minov, Electrooptical and Nonlinear Optical Lithium Niobate Crystals [in Russian], Nauka, Moscow (1987), pp. 9–24.

  3. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons [in Russian], Nauka, Moscow (2003), pp. 13–56.

  4. K. Lеngyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgar, Appl. Phys. Rev., No. 2, 040601–040628 (2015).

    Article  ADS  Google Scholar 

  5. M. N. Palatnikov, N. V. Sidorov, O. V. Makarova, and I. V. Biryukova, Fundamental Aspects of the Technology of Highly Doped Lithium Niobate Crystals [in Russian], KNTs RAN, Apatity (2017), pp. 77–228.

  6. N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. V. Syuy, E. O. Kile, and D. S. Shtarev, Neorg. Mater., 54, No. 6, 611–615 (2018) [N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. V. Syuy, E. O. Kile, and D. S. Shtarev, Inorg. Mater., 54, No. 6, 581–584 (2018)].

  7. M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Ya. Shur, J. Cryst. Growth, 291, 390–397 (2006).

    Article  ADS  Google Scholar 

  8. M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, O. B. Shcherbina, and V. T. Kalinnikov, Perspekt. Mater., No. 2, 93–97 (2011).

    Google Scholar 

  9. M. N. Palatnikov, Electronics Materials Based on Ferroelectric Single Crystals and Ceramic Solid Solutions of Alkali Metal Niobates-Tantalates with Micro- and Nanostructures, Doctoral Dissertation in Technical Sciences, Apatity (2010), pp. 40–50.

    Google Scholar 

  10. M. H. J. Emond, M. Wiegel, G. Blasse, and R. Feigelson, Mater. Res. Bull., 28, 1025–1028 (1993).

    Article  Google Scholar 

  11. D. M. Krol, G. Blasse, and R. C. Powell, J. Chem. Phys., 73, No. 1, 163–166 (1980).

    Article  ADS  Google Scholar 

  12. I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, Fiz. Tverd. Tela, 40, No. 6, 1109–1116 (1998) [I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, Phys. Solid State, 40, No. 6, 1012–1018 (1998)].

  13. N. V. Sidorov, M. N. Palatnikov, and L. A. Bobreva, Zh. Strukt. Khim., 60, No. 9, 1434–1444 (2019).

    Google Scholar 

  14. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, and E. Dieguez, Adv. Phys., 45, No. 5, 349–392 (1996).

    Article  ADS  Google Scholar 

  15. C. Fischer, M. Wohlecke, T. Volk, and N. Rubinina, Phys. Status Solidi A, 137, 247–255 (1993).

    Article  ADS  Google Scholar 

  16. J. G. Murillo, G. Herrera, A. Vega-Rios, S. Flores-Gallardo, A. Duarte-Moller, and J. Castillo-Torres, Opt. Mater., 62, 639–645 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sidorov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 2, pp. 194–200, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Smirnov, M.V. & Palatnikov, M.N. Photoluminescence of Nominally Pure Lithium Niobate Single Crystals Produced by Various Technologies. J Appl Spectrosc 87, 212–217 (2020). https://doi.org/10.1007/s10812-020-00986-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00986-4

Keywords

Navigation