Skip to main content
Log in

Analysis of Plasmonic Gold Nanostar Arrays with the Optimum Sers Enhancement Factor on the Human Skin Tissue

  • Published:
Journal of Applied Spectroscopy Aims and scope

We analyze the performance of the surface-enhanced Raman spectroscopy (SERS) substrate based on high-density gold nanostar nanoparticle (GNS) arrays assembled on the gold film and embedded in the human skin tissue as a surrounding medium. A self-assembled monolayer (SAM) of 3-aminopropyltriethoxy silane (APTES) is used for immobilizing GNSs on the Au film. The GNS–Au film and GNS–GNS coupling in the gap regions and also the GNSs interparticle coupling at their branches are observed, so the GNS arrays show more field enhancements and the sensitivity of the GNS sensor can be increased further. When the SERS substrate based on the GNS arrays is excited by a 785-nm laser line, a maximum enhancement factor (EF) of 109 is observed. It is demonstrated that the normalized EF depends on the geometry of the GNSs, the thickness of the Au film, and the separation distance between the cores of the GNSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, J. Phys. Chem. C, 117, 22198–22202 (2013).

    Google Scholar 

  2. T. Vo-Dinh, A. M. Fales, G. D. Griffin, C. G. Khoury, Y. Liu, H. Ngo, S. J. Norton, J. K. Register, H.-N. Wang, and H. Yuan, Nanoscale, 5, 10127–10140 (2013).

    ADS  Google Scholar 

  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, ACS Publications (2003).

  4. E. Boisselier and D. Astruc, Chem. Soc. Rev., 38, 1759–1782 (2009).

    Google Scholar 

  5. M. V. Park, A. M. Neigh, J. P. Vermeulen, L. J. de la Fonteyne, H. W. Verharen, J. J. Briedé, H. van Loveren, and W. H. de Jong, Biomaterials, 32, 9810–9817 (2011).

    Google Scholar 

  6. G. Bisker and D. Yelin, J. Opt. Soc. Am. B, 29, 1383–1393 (2012).

    ADS  Google Scholar 

  7. M. Yang, X. Yang, and L. Huai, Appl. Phys. A: Mater. Sci. Process., 92, 367–370 (2008).

    ADS  Google Scholar 

  8. T. Pylaev, V. Khanadeev, B. Khlebtsov, L. Dykman, V. Bogatyrev, and N. Khlebtsov, Nanotechnology, 22, 285501 (2011).

    Google Scholar 

  9. B. Khlebtsov, V. Khanadeev, I. Maksimova, G. Terentyuk, and N. Khlebtsov, Nanotechnol. Russ., 5, 454–468 (2010).

    Google Scholar 

  10. M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B, 109, 22192–22200 (2005).

    Google Scholar 

  11. G. P. Kumar, J. Opt. Soc. Am. B, 29, 594–599 (2012).

    ADS  Google Scholar 

  12. C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett., 6, 683–688 (2006).

    ADS  Google Scholar 

  13. H. Yockell-Lelièvre, F. Lussier, and J.-F. Masson, J. Phys. Chem. C, 119, 28577–28585 (2015).

    Google Scholar 

  14. N. Li, P. Zhao, and D. Astruc, Angew. Chem. Int. Ed., 53, 1756–1789 (2014).

    Google Scholar 

  15. A. H. Gandjbakhche, Compt. Rend. Acad. Sci., Ser. IV Phys., 2, 1073–1089 (2001).

    Google Scholar 

  16. Y. Liu, H. Yuan, F. R. Kersey, J. K. Register, M. C. Parrott, and T. Vo-Dinh, Sensors, 15, 3706–3720 (2015).

    Google Scholar 

  17. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotechnology, 23, 075102 (2012).

    ADS  Google Scholar 

  18. P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, Adv. Mater., 28, 10508–10517 (2016).

    Google Scholar 

  19. T. K. Lee and S. K. Kwak, J. Phys. Chem. C, 118, 5881–5888 (2014).

    Google Scholar 

  20. J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, Nanoscale, 6, 616–623 (2014).

    ADS  Google Scholar 

  21. H. Yuan, J. K. Register, H.-N. Wang, A. M. Fales, Y. Liu, and T. Vo-Dinh, Anal. Bioanal. Chem., 405, 6165–6180 (2013).

    Google Scholar 

  22. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Annu. Rev. Anal. Chem., 1, 601–626 (2008).

    Google Scholar 

  23. M. Kerker, D.-S. Wang, and H. Chew, Appl. Opt., 19, 3373–3388 (1980).

    ADS  Google Scholar 

  24. J. Z. Zhang, J. Phys. Chem. Lett., 1, 686–695 (2010).

    Google Scholar 

  25. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, Appl. Phys. Lett., 94, 153113 (2009).

    ADS  Google Scholar 

  26. J. Hu, P.-C. Zheng, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, and G.-K. Liu, Analyst, 135, 1084–1089 (2010).

    ADS  Google Scholar 

  27. Z. Zhang, Y. Wen, Y. Ma, J. Luo, X. Zhang, L. Jiang, and Y. Song, Appl. Phys. Lett., 98, 133704 (2011).

    ADS  Google Scholar 

  28. P. Taladriz-Blanco, N. J. Buurma, L. Rodríguez-Lorenzo, J. Pérez-Juste, L. M. Liz-Marzán, and P. Hervés, J. Mater. Chem., 21, 16880–16887 (2011).

    Google Scholar 

  29. A. Saha, S. Palmal, and N. R. Jana, Nanoscale, 4, 6649–6657 (2012).

    ADS  Google Scholar 

  30. L. Fabris, M. Dante, T. Q. Nguyen, J. B. H. Tok, and G. C. Bazan, Adv. Funct. Mater., 18, 2518–2525 (2008).

    Google Scholar 

  31. S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, J. Am. Chem. Soc., 135, 301–308 (2012).

    Google Scholar 

  32. J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, Nanoscale, 3, 1304–1315 (2011).

    ADS  Google Scholar 

  33. J.-H. Lee, J.-M. Nam, K.-S. Jeon, D.-K. Lim, H. Kim, S. Kwon, H. Lee, and Y. D. Suh, ACS Nano, 6, 9574–9584 (2012).

    Google Scholar 

  34. A. D. S. Indrasekara, S. Meyers, S. Shubeita, L. Feldman, T. Gustafsson, and L. Fabris, Nanoscale, 6, 8891–8899 (2014).

    ADS  Google Scholar 

  35. H. R. Stuart and D. G. Hall, Phys. Rev. Lett., 80, 5663 (1998).

    ADS  Google Scholar 

  36. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, Nano Lett., 4, 899–903 (2004).

    ADS  Google Scholar 

  37. A. Kravets, T. Borodinova, and V. Kravets, J. Opt. Soc. Am. B, 33, 302–307 (2016).

    ADS  Google Scholar 

  38. S. Piltan and D. Sievenpiper, J. Opt. Soc. Am. B, 35, 208–213 (2018).

    ADS  Google Scholar 

  39. P. B. Johnson and R.-W. Christy, Phys. Rev. B, 6, 4370 (1972).

    ADS  Google Scholar 

  40. A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, J. Phys. Chem. C, 119, 10836–10843 (2014).

    Google Scholar 

  41. F. Tian, J. Conde, C. Bao, Y. Chen, J. Curtin, and D. Cui, Biomaterials, 106, 87–97 (2016).

    Google Scholar 

  42. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, Phys. Med. Biol., 51, 1479 (2006).

    Google Scholar 

  43. T. Lister, P. A. Wright, and P. H. Chappell, J. Biomed. Opt., 17, 0909011–09090115 (2012).

    Google Scholar 

  44. J. Le Grange, J. Markham, and C. Kurkjian, Langmuir, 9, 1749–1753 (1993).

    Google Scholar 

  45. J. A. Howarter and J. P. Youngblood, Langmuir, 22, 11142–11147 (2006).

    Google Scholar 

  46. S. Atta, T. V. Tsoulos, and L. Fabris, J. Phys. Chem. C, 120, 20749–20758 (2016).

    Google Scholar 

  47. Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, Sensors, 17, 1846 (2017).

    Google Scholar 

  48. A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, Adv. Opt. Mater., 3, 71–77 (2015).

    Google Scholar 

  49. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, Nano Lett., 9, 2188–2192 (2009).

    ADS  Google Scholar 

  50. S.-Y. Chen, J. J. Mock, R. T. Hill, A. Chilkoti, D. R. Smith, and A. A. Lazarides, ACS Nano, 4, 6535–6546 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Golmohammadi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 5, p. 838, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golmohammadi, S., Etemadi, M. Analysis of Plasmonic Gold Nanostar Arrays with the Optimum Sers Enhancement Factor on the Human Skin Tissue. J Appl Spectrosc 86, 925–933 (2019). https://doi.org/10.1007/s10812-019-00917-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00917-y

Keywords

Navigation