Skip to main content
Log in

Spectrofluorimetric Method for Determination of Letrozole: Analytical Applications to Brain Tissue Samples and Alkaline Degradation Kinetic Study

  • Published:
Journal of Applied Spectroscopy Aims and scope

A simple and sensitive spectroflourimetric method has been proposed for the determination of the antitumor agent letrozole in tablets, spiked human plasma, and rat brain tissue homogenates. Our method involves measuring the native fluorescence of letrozole at 590 nm upon excitation at 239 nm as indicated upon scanning its three-dimensional spectrum. Various experimental parameters were intensively studied and the method was validated as per ICH guidelines. The calibration curve was linear over the concentration range 5–160 ng/mL, with limit of detection 1.36 ng/mL. It was successfully applied to the analysis of letrozole in Femara® tablets with mean recovery 99.35 ± 1.49% and was further applied to study the alkaline degradation kinetics of letrozole. The pseudo first-order rate constant and half-life were calculated. Moreover, successful application of our proposed procedure was carried out on spiked human plasma and rat brain tissue samples. Linear ranges were found to be 5–30 and 10–130 ng/mL, with detection limits 1.25 and 1.71 ng/mL for plasma and brain samples, respectively. Thanks to the method's simplicity, selectivity, and high sensitivity, it can be used for routine analysis in quality control laboratories and for further clinical investigations involving letrozole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sittig, Pharmaceutical Manufacturing Encyclopedia Textbook, 3rd ed., William Andrew Publishing, Norwich, New York (2013).

  2. A. S. Bhatnagar, Breast Cancer Res. Treat., 105, 7–17 (2007).

    Article  Google Scholar 

  3. J. Doiron, A. H. Soultan, R. Richard, M. M. Touré, N. Picot, R. Richard, M. Cuperlovi-Culf, G. A. Robichaud, and M. Touaibi, Eur. J. Med. Chem., 46, 4010–4024 (2011).

    Article  Google Scholar 

  4. W. R. Miller, Semin. Oncol., 14, 3–11 (2003).

    Article  Google Scholar 

  5. R. Madhup, S. Kirti, M. L. B. Bhatt, P. K. Srivastava, M. Srivastava, and S. Kumar, The Breast, 15, 440–442 (2006).

    Article  Google Scholar 

  6. S. Goyal, T. Puri, P. K. Julka, and G. K. Rath, Acta Neurochir, 150, 613–615 (2008).

    Article  Google Scholar 

  7. N. Dave, G. A. Gudelsky, and P. B. Desai, Cancer Chemother. Pharmacol., 72, 349–357 (2013).

    Article  Google Scholar 

  8. N. Dave, L. M. L. Chow, G. A. Gudelsky, K. LaSance, X. Qi, and P. B. Desai, Mol. Cancer Ther., 14, 857–864 (2015).

    Article  Google Scholar 

  9. N. Mondal, T. K. Pal, and S. K. Ghosal, Pharmazie, 62, 597–598 (2007).

    Google Scholar 

  10. M. Ganesh, K. Kamalakannan, R. Patil, S. Upadhyay, A. Srivatsava, T. Sivakumar, and S. Ganguly, Rasayan J. Chem., 1, 55–58 (2008).

    Google Scholar 

  11. S. K. Acharjya, P. Mallick, P. Panda, K. R. Kumar, and M. M. Annapurna, J. Adv. Pharm. Tech. Res., 1, 348–353 (2010)

    Article  Google Scholar 

  12. A. Rusu, M. A. Sbanca, N. Todoran, and C. E. Vari, Acta Med. Marisiensis, 63, 80–86 (2017)

    Article  Google Scholar 

  13. C. U. Pfister, M. Duval, J. Godbillon, G. Gosset, D. Gygax, F. Marfil, A. Sioufi , and B. Winkler, Int. J. Pharm. Sci., 83, 520–524 (1994).

    Google Scholar 

  14. N. Mondal, T. K. Pal, and S. K. Ghosal, Acta Pol. Pharm., 66, 11–17 (2009).

    Google Scholar 

  15. M. Ganesh, K. Rajasekar, M. Bhagiyalakshmi, M. Vinoba, K. Saktimanigandan, and H. T. Jang, Trop. J. Pharm. Res., 9, 505–510 (2010).

    Article  Google Scholar 

  16. M. Rezaee, Y. Yamini, M. Hojjati, and M. Faraji, Anal. Methods, 2, 1341–1345 (2010).

    Article  Google Scholar 

  17. A. Shrivastava, A. K. Chakraborty, S. K. Rambhade, and U. K. Patil, Pharm. Sin., 2, 263–269 (2011).

    Google Scholar 

  18. S. K. Acharjya, S. K. Bhattamisra, B. R. E. Muddana, R.V. V. Bera, P. Panda, B. P. Panda, and G. Mishra, Sci. Pharm., 80, 941–953 (2012).

    Article  Google Scholar 

  19. B. A. Moussa, R. I. El-Bagary, and E. A. Osman, Anal. Chem. Lett., 3, 139–146 (2014).

    Article  Google Scholar 

  20. F. Marfil, V. Pineau, A. Sioufi , and J. Godbillon, J. Chromatogr. B, 683, 251–258 (1996).

  21. A. Zarghi, S. M. Foroutan, A. Shafaati, and A. Khoddam, Chromatographia, 66, 747–750 (2007).

    Article  Google Scholar 

  22. J. Rodriguez, G. Castaneda, and L. Munoz, J. Chromatogr. B, 913914, 12–18 (2013).

  23. B. Beer, B. Schubert, A. Oberguggenberger, V. Meraner, M. Hubalek, H. Oberacher, Anal. Bioanal. Chem., 398, 1791–1800 (2010).

    Article  Google Scholar 

  24. J. C. Precht, B. Ganchev, G. Heinkele, H. Brauch, M. Schwab, and T. E. Mürdter, Anal. Bioanal. Chem., 403, 301–308 (2012).

    Article  Google Scholar 

  25. S. Gomes, Int. J. Adv. Res. Pharm. Biosci., 3, 84–94 (2013).

    Google Scholar 

  26. U. Mareck, G. Sigmund, G. Opfermann, H. Geyer, M. Thevis, and W. Schanzer, Rapid Commun. Mass Spectrom., 19, 3689–3693 (2005).

    Article  ADS  Google Scholar 

  27. J. J. Berzas, J. Rodriguez, A. M. Contento, and M. P. Cabello, J. Sep. Sci., 26, 908–914 (2003).

  28. J. R. Flores, A. M. C. Salcedo, M. J. V. Llerena, and L. M. Fernandez, J. Chromatogr. A, 1185, 281–290 (2008).

  29. J. R. Flores, A. M. C. Salcedo, and L. M. Fernandez, Electrophoresis, 30, 624–632 (2009).

    Article  Google Scholar 

  30. A. Rusu, G. Hancu, L. Berta, and C. E. Vari, Studia Ubb Chemia, 3, 251–264 (2017).

    Article  Google Scholar 

  31. P. Norouzi, M. R. Ganjali, M. Qomi, A. Nemati Kharat, and H. A. Zamani, Chin. J. Chem., 28, 1133–1139 (2010).

    Article  Google Scholar 

  32. M. R. Ganjali, A. Karimi, and P. Norouzi, Int. J. Electrochem. Sci., 7, 3681–3692 (2012).

    Google Scholar 

  33. H. P. Ranaganathan, G. Govindrajulu, and V. Palaniyappan, Int. J. Pharm. Pharm. Sci., 4, 582–586 (2012).

    Google Scholar 

  34. M. M. Annapurna, C. Mohapatro, and A. Narendo, J. Pharm. Anal., 2, 298–305 (2012).

  35. E. F. Elkady and M. A. Fouad, Pak. J. Pharm. Sci., 28, 2041–2051 (2015).

    Google Scholar 

  36. ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology, Q2 (R1). Geneva (2005); http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1_Guideline.pdf. [Accessed 15 December 2016].

  37. H. M. Lamb and J. C. Adkins, Drugs, 56, 1125–1140 (1998).

    Article  Google Scholar 

  38. A. H. Zawaneh, N. N. Khalil, S. A. Ibrahim, W. N. Al Dafiri, and H. M. Maher, Luminescence, 38, 1162–1168 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Abdelaal.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 5, pp. 765–771, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Kosasy, A.M., Rahman, M.H.A. & Abdelaal, S.H. Spectrofluorimetric Method for Determination of Letrozole: Analytical Applications to Brain Tissue Samples and Alkaline Degradation Kinetic Study. J Appl Spectrosc 86, 848–854 (2019). https://doi.org/10.1007/s10812-019-00905-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00905-2

Keywords

Navigation